• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, August 22, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

UD joins Mid-Atlantic Quantum Alliance

Bioengineer by Bioengineer
March 9, 2021
in Chemistry
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Collaboration to help advance quantum revolution

IMAGE

Credit: Illustration by Jeffrey C. Chase

The University of Delaware has joined the Mid-Atlantic Quantum Alliance — a hub for quantum technology research, development, innovation and education that seeks to advance U.S. and regional leadership in the coming quantum revolution.

The alliance, referred to as MQA, involves university, government and industry partners in the region and is organized and being facilitated by the University of Maryland.

In the 20th century, the first quantum revolution produced transistors, computers, lasers, the global positioning system (GPS) and many other technologies that transformed society. For the next wave of innovation, researchers are working to manipulate and control the behavior of atoms and electrons at dimensions at least a million times smaller than the width of a human hair to produce next-generation technologies — powerful quantum computers capable of tackling computing problems that are impossible today, quantum sensors that can detect phenomena at much lower levels than at present, and quantum cryptography methods for impenetrably secure transmission of information, to name only a few.

The University of Delaware has more than 30 faculty working on various aspects of quantum science and engineering, according to Matthew Doty, professor of materials science and engineering and UD’s lead technical contact for the MQA. UD researchers are developing quantum sensors to detect astrophysical phenomena such as dark matter, building more precise nuclear clocks, generating new algorithms to implement quantum error correction and developing new magnetic materials to transmit quantum information. And that’s barely scratching the surface.

UD has significant quantum research efforts underway in scope and scale. As just a few examples, UD’s Ilya Safro, associate professor of computer and information science, is leading projects funded by the Defense Advanced Research Projects Agency (DARPA) and the National Science Foundation (NSF) to develop hybrid quantum-classical algorithms that will enable control of quantum devices. Marianna Safronova, professor of physics and astronomy, is co-principal investigator of an NSF Quantum Leap Challenge Institute to develop improved quantum sensors. And Doty himself is leading a major NSF project to advance new photonic quantum device architectures that can be scaled to the large number of quantum bits (qubits) necessary to realize the full potential of quantum computing.

“The Mid-Atlantic Quantum Alliance provides an important networking nucleus,” Doty said. “There are a number of working groups building connections between faculty and industry efforts in the different focus areas of quantum science, which are seeding potential collaborations. There is also significant discussion about the new educational paradigms needed to create the ‘quantum workforce’ needed by industry.”

Current goals of the MQA include:

  • accelerating the strong quantum innovation by and among alliance members, and across the Mid-Atlantic region
  • promoting interdisciplinary, applied and translational quantum tech research and commercialization efforts and outcomes
  • making relevant quantum expertise and tech easier to find and access
  • sharing resources and identifying regional research infrastructure needs and opportunities
  • building a quantum workforce by facilitating curriculum sharing and access to unique equipment/labs/expertise and creating unique shared experiential learning programs
  • elevating diversity and inclusion as a core part of alliance efforts
  • connecting/amplifying public and K-12 education campaigns
  • building international partnerships

The 24 members of the MQA include Amazon Web Services, Booz Allen Hamilton, Bowie State University, CCDC Army Research Laboratory, George Mason University, Georgetown University, IBM, IonQ, Johns Hopkins University, Johns Hopkins Applied Physics Laboratory, Lockheed Martin, Morgan State University, MITRE Corporation, National Institute of Standards and Technology (NIST), Northrop Grumman, Pittsburgh Quantum Institute, Protiviti, Quantopo, Quaxys, Qrypt, University of Delaware, University of Maryland, Baltimore County, University of Maryland, College Park, and Virginia Tech.

###

Media Contact
Peter Kerwin
[email protected]

Original Source

https://www.udel.edu/udaily/2021/march/mid-atlantic-quantum-alliance/

Tags: Atomic/Molecular/Particle PhysicsChemistry/Physics/Materials Sciences
Share12Tweet8Share2ShareShareShare2

Related Posts

Greater hydrogen production, increased ammonia and fertilizer output—all achieved with reduced energy consumption

Greater hydrogen production, increased ammonia and fertilizer output—all achieved with reduced energy consumption

August 22, 2025
NME1 Enzyme Catalyzes Its Own Oligophosphorylation

NME1 Enzyme Catalyzes Its Own Oligophosphorylation

August 22, 2025

Seamless Integration of Quantum Key Distribution with High-Speed Classical Communications in Field-Deployed Multi-Core Fibers

August 22, 2025

AI Uncovers ‘Self-Optimizing’ Mechanism in Magnesium-Based Thermoelectric Materials

August 22, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    141 shares
    Share 56 Tweet 35
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    114 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    60 shares
    Share 24 Tweet 15

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

BeginNGS® Newborn Genome Sequencing Program Expands Global Reach Through Collaboration with Sidra Medicine in Qatar

Innovative Tool Uncovers Key Targets to Enhance CAR NK Cell Therapy Effectiveness

Greater hydrogen production, increased ammonia and fertilizer output—all achieved with reduced energy consumption

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.