• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, September 6, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home Headlines

UCLA researchers discover a new cause of high plasma triglycerides

Bioengineer.org by Bioengineer.org
January 26, 2018
in Headlines, Health, Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Photo courtesy of Dr. Stephen Young

People with hypertriglyceridemia often are told to change their diet and lose weight. But a high-fat diet isn't necessarily the cause for everyone with the condition.

UCLA researchers have discovered a subset of people with hypertriglyceridemia whose bodies produce autoantibodies — immune-response molecules that attack their own proteins — causing high levels of triglycerides in the blood.

Hypertriglyceridemia, which can increase risk of both cardiovascular disease and pancreatitis, is often caused by or exacerbated by uncontrolled diabetes or obesity. High plasma triglyceride levels can also be caused by mutations in a variety of genes that regulate triglyceride metabolism. However, despite decades of research and a growing understanding of triglyceride metabolism, most cases of hypertriglyceridemia are poorly understood.

This newly discovered syndrome, dubbed the "GPIHBP1 autoantibody syndrome," represents an important advance in understanding hypertriglyceridemia, said Dr. Stephen Young, UCLA cardiologist and molecular biologist, who led the study along with his colleagues Anne Beigneux and Loren Fong. All three are professors of medicine at the David Geffen School of Medicine at UCLA.

"It's important to recognize this new syndrome because it is life threatening and potentially treatable," Young said. The study is published online today in the New England Journal of Medicine.

Triglycerides in the bloodstream are broken down by an enzyme called lipoprotein lipase, known as LPL, inside capillaries — the body's smallest blood vessels. In 2010, Young, Beigneux and Fong discovered that another protein, GPIHBP1, binds to LPL and moves it into capillaries. Without GPIHBP1, LPL is stranded in the spaces between tissues, where it is useless for digesting the triglycerides in the bloodstream. The UCLA team went on to show that some people with hypertriglyceridemia have mutations in GPIHBP1 that keep it from binding to LPL, while others have mutations in LPL that keep it from binding to GPIHBP1. Both types of mutations prevent LPL from reaching the capillaries.

In their new research, Young, Beigneux, Fong and Katsuyuki Nakajima, a professor at Gunma University in Japan, found a group of people with hypertriglyceridemia whose GPIHBP1 can't transport lipoprotein lipase into capillaries. But in these cases, they didn't have genetic mutations; instead, they have autoantibodies against GPIHBP1 that prevent GPIHBP1 from binding LPL.

The scientists identified six people with autoantibodies against GPIHBP1. Four of those six had been diagnosed with an autoimmune disorder known to cause the body to develop autoantibodies against a variety of proteins. One of the six people with GPIHBP1 autoantibodies became pregnant. The autoantibodies against GPIHBP1 crossed the placenta and entered the baby's circulation; consequently, the newborn infant had severe hypertriglyceridemia. Fortunately, the infant's triglyceride levels gradually returned to normal with the disappearance of the mother's autoantibodies.

More research will be needed to define the frequency of the GPIHBP1 autoantibody syndrome and how to treat it, but it seems likely that immunosuppressive drugs could help reduce autoantibodies and lowering plasma triglyceride levels, Young said.

"The researchers have not only discovered a new disease, but their findings have suggested that the disease is treatable," said Dr. Michelle Olive, deputy chief, atherothrombosis and coronary artery disease branch of the National Heart, Lung and Blood Institute, funder of the study. "These findings are the result of years of NHLBI-funded studies of the molecular mechanisms of action of GPIHBP1 and are an excellent example of how basic science can lead to scientific advances with direct clinical implications."

Added Young: "GPIHBP1 autoantibodies need to be considered in any new case of severe hypertriglyceridemia."

###

Other authors from UCLA include Peter Tontonoz, Karen Reue, Maureen McMahon, Norma Sandoval, Xuchen Hu, Christopher Allan and Mikael Larsson.

Media Contact

Amy Albin
[email protected]
310-267-7095
@uclahealth

http://www.uclahealth.org/

Share12Tweet7Share2ShareShareShare1

Related Posts

blank

Optimizing Biogas from Phragmites: Grinding, Season, Co-Digestion

September 6, 2025
Tofu Whey Aquaforte Reduces Inflammation in Skin Cells

Tofu Whey Aquaforte Reduces Inflammation in Skin Cells

September 6, 2025

Overcoming Challenges in Pressure Injury Management Guidelines

September 6, 2025

Sexual Dimorphism in UGT Deficiency: New Insights Revealed

September 6, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    150 shares
    Share 60 Tweet 38
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • First Confirmed Human Mpox Clade Ib Case China

    54 shares
    Share 22 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Optimizing Biogas from Phragmites: Grinding, Season, Co-Digestion

Tofu Whey Aquaforte Reduces Inflammation in Skin Cells

Overcoming Challenges in Pressure Injury Management Guidelines

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.