• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, August 3, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

UCI researchers eavesdrop on cellular conversations

Bioengineer by Bioengineer
February 18, 2021
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

New computational tool decodes biological language of signaling molecules

IMAGE

Credit: Suoqin Jin, Qing Nie & Maksim Plikus / UCI

Irvine, Calif. — An interdisciplinary team of biologists and mathematicians at the University of California, Irvine has developed a new tool to help decipher the language cells use to communicate with one another.

In a paper published today in Nature Communications, the researchers introduce CellChat, a computational platform that enables the decoding of signaling molecules that transmit information and commands between the cells that come together to form biological tissues and even entire organs.

“To properly understand why cells do certain things, and to predict their future actions, we need to be able to listen to what they are saying to one another; mathematical and machine learning tools enable the translation of such messages,” said co-senior author Qing Nie, UCI Chancellor’s Professor of mathematics and developmental & cell biology.

“Just like in our world, where we are constantly bombarded with information, all cells experience a lot of molecular words coming at them simultaneously,” added co-senior author Maksim Plikus, UCI professor of developmental & cell biology, “What they choose to do is dependent on this steady flow of molecular information and on what words and sentences are being heard the loudest.”

To use CellChat to translate molecular messages between cells, researchers feed in a single-cell gene expression, and out comes a detailed report on signaling communication features of a given tissue or organ.

“For each distinct group of cells, CellChat shows what significant signals are being sent to their neighbors and what signals they have the ability to receive,” Plikus said. “As an interpreter of cellular language, CellChat provides scientists with a valuable insight into signaling patterns that guide function of the entire organ.”

In developing CellChat, the researchers in UCI’s NSF-Simons Center for Multiscale Cell Fate Research – including postdoctoral fellows Suoqin Jin, Christian F. Guerrero-Juarez, Raul Ramos and Lihua Zhang – borrowed heavily from machine learning tools and social network theory, which allows the platform to predict a higher level meaning of cellular language and identify contextual similarities that are otherwise not obvious. It breaks down the immense complexity of cellular communication patterns.

Cells produce modifier molecules to add emphasis to a certain command, transforming “do this” to “do this now.” CellChat automatically calibrates the strength of signaling communication between cells by considering all significantly present modifier molecules. As a result, its translation becomes more nuanced and helps to minimize inaccuracies that plague other similar yet less sophisticated computational tools.

Beyond the purely fundamental research enterprise of interpreting these biological messages, Nie said CellChat can also be used to compare communication networks in different states of an organ, such as sickness and health. Calling it a “Google Translator for the lexicon of cells,” Nie said one of tool’s most significant capabilities is that it can be used to uncover molecular drivers in a broad spectrum of maladies including cancer and autoimmune disorders.

“In our paper, we showcase the power of CellChat using atopic dermatitis, a human skin condition, but the tool can be used on any tissue with the same success,” Plikus added.

###

CellChat is available as an open-source application at https://github.com/sqjin/CellChat.
Researchers from National Taiwan University and Yale University also contributed to the study.

About the University of California, Irvine: Founded in 1965, UCI is the youngest member of the prestigious Association of American Universities and is ranked among the nation’s top 10 public universities by U.S. News & World Report. The campus has produced three Nobel laureates and is known for its academic achievement, premier research, innovation and anteater mascot. Led by Chancellor Howard Gillman, UCI has more than 36,000 students and offers 222 degree programs. It’s located in one of the world’s safest and most economically vibrant communities and is Orange County’s second-largest employer, contributing $7 billion annually to the local economy. For more on UCI, visit http://www.uci.edu.

Media access: Radio programs/stations may, for a fee, use an on-campus ISDN line to interview UCI faculty and experts, subject to availability and university approval. For more UCI news, visit news.uci.edu. Additional resources for journalists may be found at communications.uci.edu/for-journalists.

Media Contact
Brian Bell
[email protected]

Original Source

https://news.uci.edu/2021/02/17/uci-researchers-eavesdrop-on-cellular-conversations/

Related Journal Article

http://dx.doi.org/10.1038/s41467-021-21246-9

Tags: Algorithms/ModelsBiologyCell BiologyDevelopmental/Reproductive BiologyDiagnosticsGenesMicrobiologyMolecular Biology
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

CK2–PRC2 Signal Drives Plant Cold Memory Epigenetics

August 2, 2025
blank

AI-Driven Protein Design Advances T-Cell Immunotherapy Breakthroughs

August 1, 2025

Melanthiaceae Genomes Reveal Giant Genome Evolution Secrets

August 1, 2025

“Shore Wars: New Study Tackles Oyster-Mangrove Conflicts to Boost Coastal Restoration”

August 1, 2025
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    60 shares
    Share 24 Tweet 15
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    50 shares
    Share 20 Tweet 13
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    46 shares
    Share 18 Tweet 12
  • Study Reveals Beta-HPV Directly Causes Skin Cancer in Immunocompromised Individuals

    38 shares
    Share 15 Tweet 10

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Motor Interventions Improve Children’s Coordination: New Study

Deep Learning Advances Gastric Cancer Image Analysis

Metal–Sulfur Sites Boost MOF Hydrogenation Catalysis

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.