• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, October 24, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

UCI-led team discovers signaling molecule that potently stimulates hair growth

Bioengineer by Bioengineer
June 30, 2022
in Biology
Reading Time: 3 mins read
0
Maksim Plikus
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Irvine, Calif., June 30, 2022 — University of California, Irvine-led researchers have discovered that a signaling molecule called SCUBE3 potently stimulates hair growth and may offer a therapeutic treatment for androgenetic alopecia, a common form of hair loss in both women and men.

Maksim Plikus

Credit: Julie Kennedy / UCI

Irvine, Calif., June 30, 2022 — University of California, Irvine-led researchers have discovered that a signaling molecule called SCUBE3 potently stimulates hair growth and may offer a therapeutic treatment for androgenetic alopecia, a common form of hair loss in both women and men.

The study, published online today in Developmental Cell, determined the precise mechanism by which the dermal papilla cells – specialized signal-making fibroblasts at the bottom of each hair follicle – promote new growth. Although it’s well known that dermal papilla cells play a pivotal role in controlling hair growth, the genetic basis of the activating molecules involved has been poorly understood.

“At different times during the hair follicle life cycle, the very same dermal papilla cells can send signals that either keep follicles dormant or trigger new hair growth,” said Maksim Plikus, Ph.D., UCI professor of developmental & cell biology and the study’s corresponding author. “We revealed that the SCUBE3 signaling molecule, which dermal papilla cells produce naturally, is the messenger used to ‘tell’ the neighboring hair stem cells to start dividing, which heralds the onset of new hair growth.”

The production of activating molecules by the dermal papilla cells is critical for efficient hair growth in mice and humans. In people with androgenetic alopecia, dermal papilla cells malfunction, greatly reducing the normally abundant activating molecules. A mouse model with hyperactivated dermal papilla cells and excessive hair, which will facilitate more discoveries about hair growth regulation, was developed for this research.

“Studying this mouse model permitted us to identify SCUBE3 as the previously unknown signaling molecule that can drive excessive hair growth,” said co-first author Yingzi Liu, a UCI postdoctoral researcher in developmental & cell biology.

Further tests validated that SCUBE3 activates hair growth in human follicles. Researchers microinjected SCUBE3 into mouse skin in which human scalp follicles had been transplanted, inducing new growth in both the dormant human and surrounding mouse follicles.

“These experiments provide proof-of-principle data that SCUBE3 or derived molecules can be a promising therapeutic for hair loss,” said co-first author Christian Guerrero-Juarez, a UCI postdoctoral researcher in mathematics.

Currently, there are two medications on the market – finasteride and minoxidil – that are approved by the Food and Drug Administration for androgenetic alopecia. Finasteride is only approved for use in men. Both drugs are not universally effective and need to be taken daily to maintain their clinical effect.

“There is a strong need for new, effective hair loss medicines, and naturally occurring compounds that are normally used by the dermal papilla cells present ideal next-generation candidates for treatment,” Plikus said. “Our test in the human hair transplant model validates the preclinical potential of SCUBE3.”

UCI has filed a provisional patent application on the use of SCUBE3 and its related molecular compounds for hair growth stimulation. Further research will be conducted in the Plikus lab and at Amplifica Holdings Group Inc., a biotechnology company co-founded by Plikus.

The study team included health professionals and academics from UCI, San Diego, China, Japan, Korea and Taiwan.

This work was supported by LEO Foundation grants LF-AW-RAM-19-400008 and LF-OC-20-000611; Chan Zuckerberg Initiative grant AN-0000000062; W.M. Keck Foundation grant WMKF-5634988; National Science Foundation grants DMS1951144 and DMS1763272; National Institutes of Health grants U01-AR073159, R01-AR079470, R01-AR079150, R21-AR078939 and P30-AR075047; Simons Foundation grant 594598; the National Natural Science Foundation of China; the NNSFC’s Major Research Plan training program; and Taiwan’s Ministry of Science and Technology.



Journal

Developmental Cell

DOI

10.1016/j.devcel.2022.06.005

Method of Research

Experimental study

Subject of Research

Animals

Article Title

Hedgehog signaling reprograms hair follicle niche fibroblasts to a hyper-activated state

Article Publication Date

30-Jun-2022

Share12Tweet8Share2ShareShareShare2

Related Posts

Boosting Plant Growth: Indigenous Bacteria Against Nematodes

Boosting Plant Growth: Indigenous Bacteria Against Nematodes

October 24, 2025
Chemoenzymatic Creation of Medium- and Long-Chain TAGs

Chemoenzymatic Creation of Medium- and Long-Chain TAGs

October 24, 2025

Indigenous Bacteria Boost Plant Growth, Combat Nematodes

October 24, 2025

RNA m6A Controls Retrotransposon Activity in Arabidopsis

October 24, 2025

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1280 shares
    Share 511 Tweet 320
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    309 shares
    Share 124 Tweet 77
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    187 shares
    Share 75 Tweet 47
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    133 shares
    Share 53 Tweet 33

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Akkermansia Uses Polyphenols to Boost Iron Uptake

How HIV’s Shape-Shifting Protein Unlocks New Insights for Smarter Drug Design

Study Cautions That Heavier Electric Trucks May Overload New York City’s Infrastructure

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 66 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.