• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, October 16, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

UChicago researchers find simple way to massively improve crop loss simulations

Bioengineer by Bioengineer
November 21, 2018
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Library of Congress

Droughts or heat waves have consequences that spread beyond farmers anxiously watching their fields; these fluctuations in crop yields can send shockwaves through local and global food supplies and prices.

In a new study, researchers with NASA, the University of Chicago and the Potsdam Institute for Climate Impact Research added data on when each specific region plants and harvests its crops–and found it was the single most effective way to improve the simulations.

Published Nov. 21 in Science Advances, the innovative adaptation could improve the information available for policymakers and markets to brace for the impacts of crop loss.

Current models struggle to predict yields, not only in view of long-term climate change, but simply for the following year's crops. "Today's models really can't explain variability from one year to the next. Even if we just try to recreate what happened in the past, they just aren't up to par," said Jägermeyr, a postdoctoral researcher with the UChicago department of computer science, Potsdam, and NASA, and the corresponding author on the study. "It turns out that short-term yield variability is extremely important for policymakers and the food market–naturally for price levels, but also for supply shocks, trade embargoes and reserves."

For the most part, scientists have tried to improve crop yield estimates by improving the model's weather response. But instead, Jägermeyr and coauthor Katja Frieler of the Potsdam Institute tried attacking the problem from a different angle: Instead of assuming farmers grow a single variety of a crop across the globe, they implemented the average times that each region plants and harvests its crops to represent local varieties.

"The model performance just doubles," Jägermeyr said. "Getting the growing season right is the single most effective measure to better match observed corn yields."

For example, Jägermeyr said, consider a corn crop in Austria. If researchers use the same growing timeline for a corn variety growing in Mexico, they might assume the crop would benefit from an October rainfall. But in colder Austria the corn would already have been harvested–so the calculations are thrown off.

With this information, researchers' models matched up much more closely with actual, observed yields. "We are now up to task to simulate historic impacts of droughts and heat waves, which is unprecedented," Jägermeyr said, "and we have every reason to expect our future simulations will be more robust than before."

This is something that's been overlooked, and we simply show how much the timing matters. The nice thing is that it's a low-hanging fruit we can easily implement in our models," he said. "The only difficulty is that it's very data-dependent, and we don't have high-quality observations in all countries yet."

They plan to use this improved model framework to test out crop forecasting throughout the next season in real time.

###

Computation time was provided by the University of Chicago Research Computing Center's Midway computing cluster and the Potsdam Institute for Climate Impact Research.

Media Contact

Louise Lerner
[email protected]
773-702-8366
@UChicago

http://www-news.uchicago.edu

Share12Tweet8Share2ShareShareShare2

Related Posts

Redefining ‘Fake Targets’ in Antigen-Independent Immunotherapy

Redefining ‘Fake Targets’ in Antigen-Independent Immunotherapy

October 16, 2025

Vitex doniana Leaf Extracts Show Anti-Cervical Cancer Potential

October 16, 2025

Deep Learning CT Model Predicts Laryngeal Cancer Outcomes

October 16, 2025

Anemia in African Newborns: A Comprehensive Review

October 16, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1251 shares
    Share 500 Tweet 312
  • New Study Reveals the Science Behind Exercise and Weight Loss

    106 shares
    Share 42 Tweet 27
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    102 shares
    Share 41 Tweet 26
  • Revolutionizing Optimization: Deep Learning for Complex Systems

    93 shares
    Share 37 Tweet 23

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Redefining ‘Fake Targets’ in Antigen-Independent Immunotherapy

Vitex doniana Leaf Extracts Show Anti-Cervical Cancer Potential

Deep Learning CT Model Predicts Laryngeal Cancer Outcomes

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 65 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.