• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, September 16, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Ubiquitous and influential

Bioengineer by Bioengineer
February 14, 2017
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Graphic: Sonja Lorenz

The small protein ubiquitin regulates a plethora of physiological and pathophysiological processes in the human body. It lives up to its name quite literally by being ubiquitous, both in terms of its abundance and its far-reaching regulatory impact. How ubiquitin exerts its diverse functions is intensely studied all over the world. Finding answers to this question is essential to exploit the ubiquitin system efficiently for therapeutic purposes. Researchers from Würzburg have taken a key step towards this goal. Their results reveal new ways of regulating a ubiquitin ligase.

Enzymes that determine a protein's fate

"Ubiquitin ligases are enzymes that decorate cellular target proteins with ubiquitin and thus determine the fate of these target proteins," says Dr. Sonja Lorenz, senior author on the study. Ubiquitin can act as a "molecular postal code" that can guide target proteins to specific locations in the cell, lead them to serve distinct functions, carry molecular signals, integrate into large complexes, or even be destroyed.

Sonja Lorenz heads a research group at the Rudolf Virchow Center for Experimental Biomedicine at the University of Würzburg. Her team and colleagues study a particular ubiquitin ligase, HUWE1, that has been ascribed key roles in tumor formation and is considered a promising, yet unexploited cancer-therapeutic target. Their new results on the molecular mechanism of HUWE1 are reported in the journal eLife.

Divide and rule: breaking down a protein giant

With almost 4.400 amino acids HUWE1 is an extremely large protein. Its three-dimensional structure, for the most part, is unknown. "The enormous size of HUWE1 and its flexibility present a considerable challenge for structural biologists," says Sonja Lorenz. To get a handle on the protein giant, her research team followed the ancient Roman principle "divide et impera – divide and rule" and has initially determined the atomic structure of a portion of HUWE1 using X-ray crystallography.

This structure reveals a new and intriguing feature of HUWE1: Two HUWE1 molecules can pair up to form a complex known as a "dimer", thereby shutting down their enzymatic activities.

Imbalances with consequences

How does the cell prevent HUWE1 from forming dimers when the enzyme needs to be active? The Würzburg researchers also provide an answer to this question: HUWE1 exists in a fine-tuned balance of inactive dimers and single, active molecules. "Various cellular factors can regulate this balance," says Sonja Lorenz.

The tumor suppressor protein p14ARF is one such factor. It inhibits HUWE1, but is frequently lost in cancer cells. The new study provides the first mechanistic explanation of how p14ARF inhibits HUWE1. "The effects of p14ARF on the structure and activity of HUWE1 are extremely exciting," says Sonja Lorenz. "They open up a range of possibilities to manipulate HUWE1 activity that we are following up on."

###

Personal details: Sonja Lorenz

Dr. Sonja Lorenz holds an Emmy Noether grant from the German Research Foundation with which she established her lab at the Rudolf Virchow Center of the University of Würzburg in April 2014. She is the deputy speaker of the new Research Training Group 2243, "Understanding Ubiquitylation: From Molecular Mechanisms to Disease", that will start in April 2017. Her studies on the interplay of HUWE1 and p14ARF are supported by the Wilhelm Sander-Foundation for medical research.

The human ubiquitin ligase HUWE1 is regulated by a conformational switch. Bodo Sander, Wenshan Xu, Martin Eilers, Nikita Popov, Sonja Lorenz. DOI: 10.7554/eLife.21036

Media Contact

Dr. Sonja Lorenz
[email protected]
49-931-318-0526
@Uni_WUE

https://www.uni-wuerzburg.de/

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

Leveraging Hemp Waste for Sustainable 3D Biocomposites

Leveraging Hemp Waste for Sustainable 3D Biocomposites

September 16, 2025

Cleveland Clinic Study Finds Bariatric Surgery Offers Superior Long-Term Benefits Over GLP-1 Medications

September 16, 2025

Stem Cell Transplant Promotes Brain Cell Regeneration and Functional Recovery After Stroke in Mice

September 16, 2025

“‘Internal Alarm System’ Activates Immune Defense to Combat Cancer”

September 16, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    154 shares
    Share 62 Tweet 39
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    117 shares
    Share 47 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    66 shares
    Share 26 Tweet 17
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Leveraging Hemp Waste for Sustainable 3D Biocomposites

Cleveland Clinic Study Finds Bariatric Surgery Offers Superior Long-Term Benefits Over GLP-1 Medications

Stem Cell Transplant Promotes Brain Cell Regeneration and Functional Recovery After Stroke in Mice

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.