• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, October 23, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Technology

UBC Scientists Unveil Microbes That Convert Food Waste Into Energy

Bioengineer by Bioengineer
October 23, 2025
in Technology
Reading Time: 4 mins read
0
blank
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Surrey Biofuel Facility
image: Surrey Biofuel Facility

view more 

Credit: FortisBC

When 115,000 tonnes of food waste hit Surrey’s processing facility each year, an invisible army goes to work—billions of microbes convert everything from banana peels to leftover pizza into renewable natural gas (RNG). Now, UBC researchers have identified a previously unknown bacterium in the Natronincolaceae family that plays a crucial role in this process.

RNG is produced when organic waste from landfills, farms and wastewater plants breaks down. The resulting gas is captured, cleaned and upgraded into usable energy.

Here’s how it works. Inside an anaerobic digester, bacteria first break food scraps into simple compounds like fatty acids, amino acids, and sugars. Other microbes turn these into organic acids, such as acetic acid—essentially vinegar. Methane-producing organisms then feed on the acetic acid to make methane, which is refined into RNG. The newly discovered microbe is one of these critical methane producers.

Molecular detectives

The discovery, published today in Nature Microbiology, was led by Dr. Ryan Ziels, associate professor in UBC’s department of civil engineering, who studies how to turn waste into useful resources using biological treatments.

“We were studying microbial energy production in the Surrey Biofuel Facility when we noticed something odd: the microbes that usually consume acetic acid had vanished, yet the methane kept flowing,” said Dr. Ziels. “Traditional methods couldn’t identify the organisms doing the heavy lifting.”

To solve the mystery, the team fed microbes nutrients containing a heavier form of carbon. Microbes use carbon to build new proteins—so by tracing the carbon in proteins, researchers could tell who was doing the work.

“Converting waste to methane is a cooperative process involving multiple interacting microbes,” explained Dr. Steven Hallam, a professor in UBC’s department of microbiology and immunology and a co-author on the paper. “This newly identified bacterium is one of the key players making it happen.”

Staying out of a pickle

Protein-rich food waste naturally produces ammonia as it breaks down, but too much ammonia can halt methane production and cause acetic acid to build up, turning waste tanks acidic and unproductive. The newly discovered microbes, however, tolerate high ammonia levels that would shut down other methane producers, keeping the system running when it would normally fail.

“Municipal facilities owe a lot to these organisms,” said Dr. Ziels. “If acetic acid builds up, tanks have to be dumped and restarted—an expensive, messy process.”

The findings help explain why some digesters sputter while others, like Surrey’s, continue producing energy under challenging conditions. The discovery also suggests that high-ammonia environments may actually benefit these key microbes, offering insights for more efficient designs. 

Managing waste on land and sea

The molecular tagging approach could also detect other elusive microbes. Dr. Ziels and his colleagues are now using the same technique to study microbial communities breaking down microplastics in the ocean.

As cities worldwide wrestle with waste management and low-carbon energy transitions, the team believes some of nature’s smallest organisms may hold the keys to our biggest environmental challenges.

“Next time you toss your scraps in the compost bin, remember: you’re not just composting. You’re feeding microscopic powerhouses that help produce cleaner energy,” said Dr. Ziels.

The research was conducted in collaboration with Fortis BC and Convertus. Researchers at the U.S. Department of Energy’s Joint Genome Institute and Environmental Molecular Sciences Laboratory also contributed to the study.

Additional quotes:

“We’re delighted to help support British Columbia’s research ecosystem that has the potential for real-world impact. Advancements like this—that deepen our understanding of anaerobic digestion—may have the potential to enable facilities like Surrey Biofuels to produce more Renewable Natural Gas from the same amount of organic waste. Collaborations between UBC, FortisBC and the Surrey Biofuel facility continue to strengthen our ability to support lower carbon energy solutions.” – Jamie King, director, innovation and measurement, FortisBC

“At our Surrey facility, we strive to maintain a stable microbial community in order to achieve the benefits of RNG as a clean biofuel. If stability is compromised, this has significant financial implications as production schedules must be adjusted and we would have to re-start from scratch.” – Felizia Crozier, process support engineer, Convertus Group

Journal

Nature Microbiology

DOI

10.1038/s41564-025-02146-w

Method of Research

Experimental study

Subject of Research

Not applicable

Article Title

Activity-targeted metaproteomics uncovers rare syntrophic bacteria central to anaerobic community metabolism

Article Publication Date

21-Oct-2025

Media Contact

Lou Corpuz-Bosshart

University of British Columbia

[email protected]

Office: 604-999-0473

Journal
Nature Microbiology
DOI
10.1038/s41564-025-02146-w

Journal

Nature Microbiology

DOI

10.1038/s41564-025-02146-w

Method of Research

Experimental study

Subject of Research

Not applicable

Article Title

Activity-targeted metaproteomics uncovers rare syntrophic bacteria central to anaerobic community metabolism

Article Publication Date

21-Oct-2025

Keywords
/Applied sciences and engineering/Engineering/Civil engineering/Waste management

/Applied sciences and engineering/Engineering/Civil engineering/Waste management/Waste disposal

bu içeriği en az 2000 kelime olacak şekilde ve alt başlıklar ve madde içermiyecek şekilde ünlü bir science magazine için İngilizce olarak yeniden yaz. Teknik açıklamalar içersin ve viral olacak şekilde İngilizce yaz. Haber dışında başka bir şey içermesin. Haber içerisinde en az 12 paragraf ve her bir paragrafta da en az 50 kelime olsun. Cevapta sadece haber olsun. Ayrıca haberi yazdıktan sonra içerikten yararlanarak aşağıdaki başlıkların bilgisi var ise haberin altında doldur. Eğer yoksa bilgisi ilgili kısmı yazma.:
Subject of Research:
Article Title:
News Publication Date:
Web References:
References:
Image Credits:

Keywords
Tags: anaerobic digestion processbiogas production from food scrapsenvironmental impact of food wastefood waste recycling technologymicrobes converting food wasteNatronincolaceae family bacteriumrenewable energy sourcesrenewable natural gas productionSurrey biofuel facility innovationssustainable energy from organic wasteUBC research on bacteriawaste-to-energy solutions

Tags: anaerobic digestionfood waste conversionNatronincolaceae bacteriumrenewable natural gasSurrey Biofuel Facility
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Versatile Crystal Emerges as Optimal Choice for Low-Temperature Optical Technologies

October 23, 2025
Digital Researchers Poised to Revolutionize Scientific Exploration

Digital Researchers Poised to Revolutionize Scientific Exploration

October 23, 2025

Vulnerable Peatlands: Major Carbon Reserves Face Potential Release

October 23, 2025

Mapping Fluoride Levels in Brazil’s Semi-Arid Regions

October 23, 2025

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1277 shares
    Share 510 Tweet 319
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    308 shares
    Share 123 Tweet 77
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    167 shares
    Share 67 Tweet 42
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    132 shares
    Share 53 Tweet 33

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Exploring Vicarious Trauma in Hospice Nurses

Assessing Muscularity Overvaluation and Eating Disorder Risks

Innovative ‘Molecular Dam’ Prevents Energy Loss in Nanocrystals

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 66 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.