• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, November 4, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

UBC researchers test 3-D-printed water quality sensor

Bioengineer by Bioengineer
July 19, 2017
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: UBC Okanagan

Researchers at UBC's Okanagan campus have designed a tiny device –built using a 3D printer–that can monitor drinking water quality in real time and help protect against waterborne illness.

Prof. Mina Hoorfar, Director of the School of Engineering, says new research proves their miniaturized water quality sensors are cheap to make, can operate continuously and can be deployed anywhere in the water distribution system.

"Current water safety practice involves only periodic hand testing, which limits sampling frequency and leads to a higher probably of disease outbreak," says Hoorfar. "Traditional water quality sensors have been too expensive and unreliable to use across an entire water system."

Until now, that is. Tiny devices created in her Advanced Thermo-Fluidic lab at UBC's Okanagan campus, are proving reliable and sturdy enough to provide accurate readings regardless of water pressure or temperature. The sensors are wireless, reporting back to the testing stations, and work independently–meaning that if one stops working, it does not bring down the whole system. And since they're made using 3D printers, they are fast, inexpensive and easy to produce.

"This highly portable sensor system is capable of constantly measuring several water quality parameters such as turbidity, pH, conductivity, temperature, and residual chlorine, and sending the data to a central system wirelessly," she adds. "It is a unique and effective technology that can revolutionize the water industry."

While many urban purification plants have real-time monitoring sensors, they are upstream of the distribution system. Often, Hoorfar notes, the pressure at which water is supplied to the customer is much higher than what most sensors can tolerate. But her new sensors can be placed right at or within a customer's home, providing a direct and precise layer of protection against unsafe water.

And when things go wrong, they can end tragically. More than 17 years ago, four people died, and hundreds became ill, after drinking E.coli-affected water in Walkerton, Ontario.

"Although the majority of water-related diseases occur in lower- or middle-income countries, water quality events in Walkerton, for example, raise serious questions about consistent water safety in even developed countries like Canada," says Hoorfar. "Many of these tragedies could be prevented with frequent monitoring and early detection of pathogens causing the outbreak."

###

This research, recently published in Sensors, was partly funded by the Natural Science and Engineering Research Council of Canada Strategic Project Grant and Postgraduate Scholarship funding.

Media Contact

Patty Wellborn
[email protected]
250-807-8463

http://ok.ubc.ca/welcome.html

Share15Tweet7Share2ShareShareShare1

Related Posts

blank

New Study Uncovers Variation in Viral Risk Among Bat Species

November 3, 2025
16th International Congress on Skin Ageing & Challenges 2025: Pioneering Innovation, Strategic Approaches, and Translational Advances

16th International Congress on Skin Ageing & Challenges 2025: Pioneering Innovation, Strategic Approaches, and Translational Advances

November 3, 2025

Wireless Neural Implant Smaller Than a Grain of Salt Monitors Brain Activity

November 3, 2025

Big Brains Demand Warm Bodies and Larger Offspring, New Study Finds

November 3, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1297 shares
    Share 518 Tweet 324
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    313 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    204 shares
    Share 82 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    137 shares
    Share 55 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Evaluating Intermediate Care’s Effects on Healthcare Outcomes

Eco-Friendly LaVO4 Nanoparticles Boost Paracetamol Detection

Biodegradable Matrix Boosts Blood Vessel Growth for Stroke Recovery

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.