• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, September 12, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

UBC engineers create ways to keep stone waste out of landfills

Bioengineer by Bioengineer
September 19, 2019
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Discarded materials mixed into a slurry for a second life

IMAGE

Credit: UBCO

Using polymers and natural stone slurry waste, UBC Okanagan researchers are manufacturing environmentally friendly stone composites.

These new composites are made of previously discarded materials left behind during the cutting of natural structural or ornamental blocks for buildings, construction supplies or monuments. While reusing the waste material of natural stone production is common in cement, tile and concrete, adding the stone slurry to polymers is a new and innovative idea, explains School of Engineering Professor Abbas Milani.

A growing industrial demand for multifunctional bio-friendly raw materials is pushing researchers to develop value-added and energy-saving biocomposites and processes, he explains.

“Because the slurry is a waste material, it comes at a lower cost for recycled composite production,” says Milani, director of UBC’s Materials and Manufacturing Research Institute (MMRI).

Milani and his colleagues recently received UBC eminence funding to establish a cluster of research excellence in biocomposites. The cluster will develop novel agricultural and forestry-based bio-and recycled composites to minimize the impact of conventional plastics and waste on the environment.

The powdered stone waste used in the project provides flexibility to the new particulate polymer matrix composite. It can be mixed at different ratios into the finished product through appropriate heat or pressure to meet structural requirements or aesthetic choices, defined by industry and customers.

“This green stone composite can easily be integrated into a variety of applications,” says UBC Research Associate Davoud Karimi. “These composites can be used in decorations and sanitation products ranging from aerospace to automotive applications.”

The researchers varied the amount of stone added to the composites then tested several parameters to determine strength, durability and density along with thermal conductivity. The molding and mechanical tests were conducted in the Composites Research Network Okanagan Laboratory with collaboration from the MMRI.

By adding the stone waste to the composites, researchers determined that it not only increased the virgin polymer’s strength and durability, but the composites’ conductivity increased proportionally based on the amount of stone added.

“The increased strength is important, but the increased conductivity (up to 500 per cent) opens a huge door to several new potential applications, including 3D printing with recycled composites,” explains Milani.

“Any time we can divert waste from landfills and generate a product with the potential of economic benefit is a win-win,” Milani adds. “We hope that these sorts of products, that are carefully designed with the aid of multi-disciplinary researchers focused on 3R measures (repairable, reusable, and recyclable), can significantly contribute to the economy of our region and Canada as a whole.”

###

The research was funded by the Natural Sciences and Engineering Research Council (NSERC) and the National Research Institute for Science Policy (NRISP). It was recently published in two prestigious journals Composite Structures and Composites Part B: Engineering.

Media Contact
Patty Wellborn
[email protected]

Original Source

https://news.ok.ubc.ca/2019/09/19/ubc-engineers-create-ways-to-keep-stone-waste-out-of-landfills/

Related Journal Article

http://dx.doi.org/10.1016/j.compstruct.2019.111331

Tags: Biomedical/Environmental/Chemical EngineeringChemistry/Physics/Materials SciencesCivil EngineeringEcology/EnvironmentPolymer Chemistry
Share12Tweet8Share2ShareShareShare2

Related Posts

Random-Event Clocks Offer New Window into the Universe’s Quantum Nature

Random-Event Clocks Offer New Window into the Universe’s Quantum Nature

September 11, 2025
Portable Light-Based Brain Monitor Demonstrates Potential for Advancing Dementia Diagnosis

Portable Light-Based Brain Monitor Demonstrates Potential for Advancing Dementia Diagnosis

September 11, 2025

Scientists reinvigorate pinhole camera technology for advanced next-generation infrared imaging

September 11, 2025

BeAble Capital Invests in UJI Spin-Off Molecular Sustainable Solutions to Advance Disinfection and Sterilization Technologies

September 11, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    152 shares
    Share 61 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    65 shares
    Share 26 Tweet 16
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Nicotine Dependence Linked to Health Behaviors in Korean Smokers

Novel V2O5/ZnO Nanocomposite Electrodes for Energy Storage

Evaluating Energy Digestibility in Quail Feed Ingredients

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.