• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, August 31, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

UB researchers identify new model of cerebral cortex development linked to reelin protein expression

Bioengineer by Bioengineer
September 14, 2022
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

The correct development of the brain cortex is an essential process for the acquisition of correct cognitive skills. Reelin, a key extracellular protein in neuronal migration and synaptic plasticity, is determinant in this process. For this reason, the dysfunction —genetic or at an expression level— of this protein is involved in neurodevelopmental pathologies —such as lissencephalies, epilepsy or some psychiatric disorders, particularly autism, schizophrenia and bipolar disorder— or neurodegenerative diseases.

UB SCIENTIFIC TEAM

Credit: UNIVERSITY OF BARCELONA

The correct development of the brain cortex is an essential process for the acquisition of correct cognitive skills. Reelin, a key extracellular protein in neuronal migration and synaptic plasticity, is determinant in this process. For this reason, the dysfunction —genetic or at an expression level— of this protein is involved in neurodevelopmental pathologies —such as lissencephalies, epilepsy or some psychiatric disorders, particularly autism, schizophrenia and bipolar disorder— or neurodegenerative diseases.

Now, an article published in the journal Proceedings of the National Academy of Sciences (PNAS) reveals the decisive role of reelin expressed by the Cajal-Retzius pioneer neurons (CR) or cortical GABAergic neurons in the process of corticogenesis and neuronal migration. The study was led by Professor Eduardo Soriano, from the Department of Cell Biology, Physiology and Immunology of the Faculty of Biology and the Institute of Neurosciences (UBNeuro) of the University of Barcelona, and the Biomedical Research Networking Center on Neurodegenerative Diseases (CIBERNED), and its first authors are the researchers Alba Vílchez and Yasmina Manso (UB-UBNeuro-CIBERNED).

The study is based on the analysis of genetically modified mice to inactivate the reelin gene in pioneer CR neurons and cortical GABAergic interneurons. While CR cells play an essential role at early stages, “the study stresses the fundamental role of the GABAergic interneuron-derived reelin in late neuronal migration”, states Professor Eduardo Soriano.

A new model for reelin protein action

The team also described the existence of transient migratory deficits in some neuronal populations, a process that indicates that reelin expressed by any other of the neuronal populations is sufficient to reverse and compensate for some effects in cortical lamination in the brain. Based on this study, the authors present a new model of action for reelin, in the development of the cerebral cortex based on the cooperation and the spatial, cellular and sequential specific expression of this key protein.

Several neuropsychiatric disorders are linked to alterations in neuronal migration and reelin deficits in interneurons. “Thus, this study can provide a better understanding of the mechanisms associated with human brain disorders related to reelin deficits associated with migration alteration”, concludes the research team.

Among the coauthors of the study are Marta Pascual and Alba Elías-Tersa (UB-UBNeuro-CIBERNED); Víctor Borrell and Adrián Cárdenas, from the Institute of Neurosciences (CSIC-Miguel Hernández University); Manuel Álvarez-Dolado and Magdalena Martínez-Losa, from the Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER), and Angus C. Nairn, from Yale University (United States).

 



Journal

Proceedings of the National Academy of Sciences

DOI

10.1073/pnas.2120079119

Method of Research

Experimental study

Subject of Research

Animals

Article Title

Specific contribution of Reelin expressed by Cajal–Retzius cells or GABAergic interneurons to cortical lamination

Article Publication Date

6-Sep-2022

Share12Tweet8Share2ShareShareShare2

Related Posts

Exploring VOZ Gene Family’s Role in Cotton Heat Stress

August 31, 2025

Cortisol’s Role in Animal Stereotypies: Help or Harm?

August 31, 2025

Potential Biomarkers: CircRNA_0001412 and CircRNA_0001566 in Rheumatoid Arthritis

August 31, 2025

Pet Guardianship and Health: Australian Study Insights

August 31, 2025

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    152 shares
    Share 61 Tweet 38
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Do people and monkeys see colors the same way?

    112 shares
    Share 45 Tweet 28

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Estradiol Levels Influence Hormone Therapy Success in Transfers

Portable Bioprinters: Innovations in Dental Bioprinting

Diabetes Screening Insights for Women in Lesotho

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.