• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, October 23, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

UAlberta research identifies possible new pathway to treat anxiety

Bioengineer by Bioengineer
June 14, 2018
in Health
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Melissa Fabrizio

Researchers know that anxiety is a result of repeated stress. William Colmers, a University of Alberta professor in the Department of Pharmacology, is trying to understand why stress affects people differently, and to identify possible new therapeutic approaches to anxiety disorders.

The body is designed to deal with stress thanks to a "fight or flight" response that helps prepare your mind and body to either defend yourself or get away from stressors. Normally, this response reverses once the danger is over, but the over-use of this stress response can also end up causing anxiety.

"Your resources become depleted," said Colmers. "It's like gunning your engine to take off, but if you don't stop, you'll run out of gas at some point."

Anxiety disorders are widespread in today's society. One in four people have an incident in their lifetime, the severity of which can range from manageable to debilitating.

The Colmers lab is interested in the reversal process–turning the stress back down to a level where you can use the resources that you are wasting on the flight or fight response to do other essential things.

The U of A team has identified a new pathway in the brain that might be a good target for a drug to reduce the symptoms of anxiety.

"It's a whole new way of looking at how anxiety can be regulated. It gives us a great deal of hope in terms of finding new avenues for treatment," said Colmers.

Peptide pivot point influences anxiety

To do this, Colmers studied the stress hormone, a peptide called corticotropin-releasing hormone (CRH), and the anti-stress hormone that stops the cycle, called neuropeptide-Y (NPY).

NPY is a brain chemical messenger that the Colmers lab has studied in relation to epilepsy and appetite. He is now investigating how the hormone affects a stress-sensitive part of the brain called the amygdala and its action in reversing stress responses.

It has been shown that NPY causes an animal to become less stressed, acting as an anxiolytic?reducing anxiety. The response to NPY can be observed by testing if the animal is more willing to interact with other animals it does not know, which can be a stressful experience.

While the effect of exposure to NPY lasts just a short while, multiple exposures make the animal resilient to stress for weeks or months.

The Colmers lab identified the exact mechanism that elicits this response:

Activity in the output neurons of the amygdala signals fear or danger. Anything that slows their activity down causes anxiolysis (inhibiting anxiety). The stress hormone CRH increases the activity of these neurons, while NPY does the opposite, slowing down the firing of these neurons.

The same ion channel in the nerve cell's membrane is activated by CRH to excite these neurons, and is shut down by NPY to silence them.

"The same pivot point is being used by the peptides that cause or reduce anxiety," said Colmers.

Colmers observed that over a longer period, the ion channels that NPY shuts down disappear from the membrane, so there are less of those ion channels around.

In a collaboration with Janice Urban's laboratory at Rosalind Franklin University in North Chicago, IL, the U of A team tested to see how important the channel was for behavior.

The lab used a small hairpin RNA (shRNA), which can prevent the protein from being made by the nerve cell. They used a tailored virus to get the nerve cells to produce the shRNA that stops their normal production of the ion channel. It is a very selective method, and can be put in very precise regions of the brain using this viral delivery system.

The group found that within a week of inhibiting the protein, the animals were more likely to interact, and the change lasted for at least eight weeks.

"Knocking down the ion channel protein causes animals to be less anxious," said Colmers. "This gives us a new drug target, and we now have a better understanding of how that area of the brain works."

###

The research was funded by the National Institutes of Health in the United States and was a collaboration with Janice Urban, professor and Chair of Physiology at Rosalind Franklin University in Chicago and the Director of the Center for Stress Resilience and Psychiatric Disorders.

Colmers' paper "NPY Induces Stress Resilience via Downregulation of Ih in Principal Neurons of Rat Basolateral Amygdala" was published in the Journal of Neuroscience on May 9, 2018.

Media Contact

Shelby Soke
[email protected]
403-988-4730
@ualberta_fomd

http://www.med.ualberta.ca

Related Journal Article

http://dx.doi.org/10.1523/JNEUROSCI.3528-17.2018

Share12Tweet7Share2ShareShareShare1

Related Posts

Designing Ca2+ Channels from Filter Geometry

October 23, 2025

Validating Holistic Nursing Competence in Iranian Nurses

October 23, 2025

Whole-Body Vibration: Boosting Brain and Body in Seniors

October 23, 2025

Groundbreaking Global Study Reveals Vast Disparities in Women’s Cancer Care

October 23, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1275 shares
    Share 509 Tweet 318
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    306 shares
    Share 122 Tweet 77
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    146 shares
    Share 58 Tweet 37
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    132 shares
    Share 53 Tweet 33

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Designing Ca2+ Channels from Filter Geometry

Validating Holistic Nursing Competence in Iranian Nurses

CGREF1 Boosts Colorectal Cancer Migration, Indicates Poor Prognosis

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 66 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.