• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, August 28, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

UA researchers develop novel ‘lung-on-a-leaf’ model to study pulmonary diseases

Bioengineer by Bioengineer
June 20, 2018
in Health
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: UA College of Medicine – Phoenix

Researchers at the University of Arizona College of Medicine – Phoenix have developed a revolutionary "lung on a leaf" to study pulmonary diseases.

Kenneth Knox, MD, professor and associate dean of faculty affairs and development, and Frederic Zenhausern, PhD, MBA, professor and director of the UA Center for Applied NanoBioscience and Medicine, have received a three-year, $750,000 grant from the Arizona Biomedical Research Commission to study lung infections like Valley fever and inflammatory conditions like sarcoidosis in a plant model.

"The lung is a very complex organ," Dr. Knox said. "There are not many novel ways to study the lung, but growing cells on a leaf would be a way for us to organize cell types in a biologically meaningful way to learn more about lung immunity and lung fibrosis."

Dr. Knox hopes that by using inactive Coccidioides fungus–the cause of Valley fever–to simulate inflammation, they will be better able to understand how inflammation begins, which will pave the way for new therapies.

The study not only will develop an innovative model to study pulmonary disease, but the revolutionary approach, if successful, will allow researchers to bypass testing their theories on animals.

"We are at a point in medicine where collaborations across disciplines are needed to take us to the next level," Dr. Knox said. "Our goal is to move the field forward in how we model different lung diseases."

The idea for the lung on a leaf began with UA undergraduate researcher Ryan Zenhausern (Dr. Zenhausern's son) and his mentor, Jerome Lacombe, PhD, UA assistant professor, who were developing a new cancer research model using spinach leaves. The natural spinach leaf structure was the basis for an improved in vitro (outside the body) tumor model to allow more accurate study of the causes, effects and treatment of different cancers. Dr. Knox became interested in their research from a pulmonologist's perspective, since both a lung and a leaf possess similar branching structures.

Dr. Zenhausern's lab has been working on the in vitro leaf platform–research on an engineered system that mimics a living organism–since the summer of 2017.

Previously, the lab developed an "organ on a chip" that mimics the human gut. With this technology, researchers can analyze the complex interactions between human cells and the microbial ecosystems of the gut, predicting their effects on health or disease.

"We are developing a tool that will better mimic the human system and improve the overall concept of personalized medicine," Dr. Zenhausern said. "We now can think about the long vision because we have those building blocks. If we can put a lung on a leaf, maybe next it will be a liver, or another organ."

The platform technology provides a 3-D tissue microenvironment that is constructed by treating a leaf with detergents to remove all traces of plant cells, DNA and proteins, leaving only its scaffold. Next, different types of cells are repopulated on the skeleton of the leaf and re-cellularized on the surface of the leaf. The stem vasculature can be populated with the appropriate cell types, which resemble blood vessels. The team hopes to use human patient cells by the third year of their grant.

Co-investigators are Drs. Knox, Zenhausern and Lacombe; Ting Wang, PhD; Louise Hecker, PhD, and Mrinalini Kala, PhD.

In discussing how the research could be used in other realms, Dr. Zenhausern said the lung model could be used to measure radiation exposure in cancer patients and in space, where astronauts are exposed to large amounts of radiation.

"From an engineering perspective, we are cross-utilizing the different fields from plant biology, medicine and engineering," he said. "We can create a platform technology that will be more useful in studying the entire biological system, which is very complex in medicine."

###

About the UA College of Medicine – Phoenix

The University of Arizona College of Medicine – Phoenix admitted its inaugural class of first-year medical students in August 2007. The College inspires and trains exemplary physicians, scientists and leaders to optimize health and health care in Arizona and beyond. The College is uniquely positioned to accelerate the biomedical and economic engines in Phoenix and the state by leveraging vital relationships with key clinical and community partners. For more information, please visit phoenixmed.arizona.edu.

Media Contact

Marian Frank
[email protected]
602-827-2022

http://uahs.arizona.edu/

Original Source

http://opa.uahs.arizona.edu/newsroom/news/2018/ua-researchers-develop-novel-lung-leaf-model-study-pulmonary-diseases

Share12Tweet7Share2ShareShareShare1

Related Posts

Advancements in HSP90 Inhibitors: Structure-Activity Insights

August 28, 2025

Rewrite Barriers and solutions for introducing donation after circulatory death (DCD) in Japan as a headline for a science magazine post, using no more than 8 words

August 28, 2025

Rewrite Organic-inorganic covalent selenium reversing ischemic reperfusion injury as a headline for a science magazine post, using no more than 8 words

August 28, 2025

Rewrite Nuclear PKM2: a signal receiver, a gene programmer, and a metabolic modulator as a headline for a science magazine post, using no more than 8 words

August 28, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    149 shares
    Share 60 Tweet 37
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    82 shares
    Share 33 Tweet 21

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Comparative Analysis of Cissus Leaf Characteristics

Surgical Volume and Ovarian Cancer Care Quality Linked

Precise Assembly of Nanopore Sequencing in Pathogenic Bacteria

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.