• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, September 12, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

UA Cancer Center team identifies a switch that may help target dormant cancer cells

Bioengineer by Bioengineer
September 26, 2017
in Science News
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Dr. Cecil Fox, National Cancer Institute

TUCSON, Ariz. – A study by scientists at the University of Arizona and the University of Pittsburgh may hold the key to targeting dormant — or inactive –cancer cells, which are resistant to chemotherapy and other treatments. The results were published today in the journal Cell Reports.

Cells can enter a sleeplike state known as quiescence, during which they stop growing and dividing. Just as sleep can be deep or shallow, a cell's quiescence also can vary in depth. Altering this depth can make it easier or more difficult for a cell to "wake up" and start dividing again.

Because cancer therapies target cells that are awake and actively dividing, quiescent cancer cells often evade treatment. Metastatic cells, those that have left the primary tumor site and spread to distant organs, are especially good at evading treatment by entering quiescence. After cancer therapy has ended, these cells eventually may wake up and begin dividing again, often very aggressively, leading to cancer recurrence.

The UA Cancer Center's Guang Yao, PhD, UA assistant professor of molecular and cellular biology, is the senior coauthor of the study. His lab investigated ways to use a genetic "dimmer switch" to regulate the dormancy of normal cells and tumor cells. This strategy may be key to targeting metastatic tumors.

According to Dr. Yao, this research could lead to ways to "make quiescence shallower so that those cells cannot be hidden from therapeutic treatment." Dormant cancer cells that are roused from their slumber and begin multiplying would once again be vulnerable to chemotherapies.

Alternately, learning how to regulate cancer cells' dormancy could allow scientists to turn the dimmer switch in the other direction. Inducing a deep slumber in cancer cells could prevent them from waking up to cause cancer recurrence.

Previous research identified a network of genes called Retinoblastoma (Rb)-E2F that plays a pivotal role in normal cell division and quiescence. Disruption of the Rb-E2F gene network often leads to uncontrolled cell division and cancer formation.

Dr. Yao's lab constructed a computer model to simulate how changing the expression of different genes in the Rb-E2F network affects the depth of quiescence. The computer model made predictions that investigators then were able to test in a rat-cell model. They increased the expression of various target genes in live cells and observed changes in the depth of quiescence, reflected in how easily cells could be roused from their "sleep."

Not all genes in the network affect the quiescence depth to the same degree. "Different components of the Rb-E2F network can be experimentally altered to change quiescence depth to different levels, like adjusting a dimmer switch," said Dr. Yao. For example, higher expression of one gene (Myc) in the network reduces the depth of quiescence in small increments, whereas higher expression of another gene (Cyclin D) reduces depth of quiescence in larger increments, making it much easier to wake the cells from their quiescent "slumber."

"The advantage of understanding this 'dimmer switch' mechanism is that we can more accurately adjust the dormant level of cells so that we may specifically target dormant cancer cells, whose quiescent state is likely less stable than that of normal cells," Dr. Yao commented.

The Yao lab is at the forefront of research into the control of quiescence depth. Earlier this year, in an article published in Nature Communications, the lab demonstrated that prior cell growth affects the Rb-E2F switch in quiescent cells, leading to variations of quiescent depth. In another report in Oncotarget, they identified natural compounds derived from a mushroom that can reduce the quiescence depth of dormant cancer cells, sensitizing them to chemotherapy drugs.

With respect to future studies, Dr. Yao added, "We are investigating how the Rb-E2F switch interacts with other quiescence regulatory pathways to control quiescence depth in different cell types under different conditions, which may help future development of therapies against dormant cancer cells."

###

Other study investigators include: Jungeun Sarah Kwon, PhD, Nicholas Everetts, BS, Xia Wang, PhD, and Kimiko Della Croce, BS, of the University of Arizona, and Weikang Wang, PhD, and Jianhua Xing, PhD, at the University of Pittsburgh.

This research was supported by the National Science Foundation (under grant numbers DMS-1463137, to Drs. Yao and Xing, and DMS-1418172, to Dr. Yao), National Institutes of Health (under grant number GM-084905, a T32 fellowship, to Dr. Kwon), Defense Advanced Research Projects Agency (under grant number WF911NF-14-1-0395, to Dr. Yao), and the Natural Science Foundation of China and Anhui Province (under grant numbers 31500676 and 1508085SQC202, to Dr. X. Wang).

About the University of Arizona Cancer Center

The University of Arizona Cancer Center is the only National Cancer Institute-designated Comprehensive Cancer Center headquartered in Arizona. The UACC is supported by NCI Cancer Center Support Grant No. CA023074. With primary locations at the University of Arizona in Tucson and at St. Joseph's Hospital and Medical Center in Phoenix, the UACC has more than a dozen research and education offices in Phoenix and throughout the state and 300 physician and scientist members work together to prevent and cure cancer. For more information: uacc.arizona.edu (Follow us: Facebook | Twitter | YouTube)

About the University of Arizona Health Sciences

The University of Arizona Health Sciences is the statewide leader in biomedical research and health professions training. The UA Health Sciences includes the UA Colleges of Medicine (Phoenix and Tucson), Nursing, Pharmacy and Mel and Enid Zuckerman College of Public Health, with main campus locations in Tucson and the growing Phoenix Biomedical Campus in downtown Phoenix. From these vantage points, the UA Health Sciences reaches across the state of Arizona and the greater Southwest to provide cutting-edge health education, research, patient care and community outreach services. A major economic engine, the UA Health Sciences employs almost 5,000 people, has nearly 1,000 faculty members and garners more than $126 million in research grants and contracts annually. For more information: uahs.arizona.edu (Follow us: Facebook | Twitter | YouTube | LinkedIn)

Media Contact

Anna C. Christensen
[email protected]
520-626-6401

http://uahs.arizona.edu/

Share12Tweet8Share2ShareShareShare2

Related Posts

Gal-9 on Leukemia Stem Cells Predicts Prognosis

September 12, 2025
blank

Auranofin’s Anti-Leishmanial Effects: Lab and Animal Studies

September 12, 2025

Nanomedicine: A New Frontier in Targeting Metastasis

September 12, 2025

Fungal Effector Undermines Maize Immunity by Targeting ZmLecRK1

September 12, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    152 shares
    Share 61 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    64 shares
    Share 26 Tweet 16
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Gal-9 on Leukemia Stem Cells Predicts Prognosis

Auranofin’s Anti-Leishmanial Effects: Lab and Animal Studies

Nanomedicine: A New Frontier in Targeting Metastasis

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.