• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, September 30, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Two plant immune branches more intimately connected than previously believed

Bioengineer by Bioengineer
April 1, 2021
in Science News
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Dr. Kenichi Tsuda

Plant inducible defense starts with the recognition of microbes, which leads to the activation of a complex set of cellular responses. There are many ways to recognize a microbe, and recognition of microbial features by pattern recognition receptors (PRRs) outside the cell was long thought to activate the first line of defense: Pattern Triggered Immunity, or PTI. To avoid these defense responses, microbes of all kinds evolved the ability to deliver effector molecules to the plant cell, either directly into the cytoplasm or into the area just outside the cell, where they are taken up into the cytoplasm. Response to these effector molecules was thought to be mediated exclusively by intracellular nucleotide-binding domain leucine-rich repeat receptors (NLRs) which induce Effector Triggered Immunity, or ETI. These two signaling pathways are often thought of as two distinct branches of the plant immune response, with each contributing differently to overall immunity. However, the dichotomy between PTI and ETI has become blurred due to recent discoveries, indicating that responses to PRR receptor signaling and NLR signaling extensively overlap.

“The two immune branches were previously considered to be separate but increasing evidence in recent years shows that they are intimately connected,” explained Kenichi Tsuda, a plant biologist at Huazhong Agricultural University in China. “It is time to re-think the current model.”

Over the past year and a half, exciting findings have revealed a much more complex and nuanced picture of plant defense. Tsuda and colleague You Lu, of the University of Minnesota in the United States, collaborated on a review recently published in the MPMI journal. Their goal was to integrate these new ideas with the long-standing model of separate ETI and PTI pathways into a newer, more nuanced model in which the pathways do exist, but with multiple points of interaction between them and in which each pathway is intimately connected.

These ideas are central to our understanding of the interactions between plants and microbes, but also have important implications for agriculture. “These two branches of plant immunity contribute majorly to pathogen resistance,” said Tsuda. “Modes of action of the plant immune system is fundamental to any application of our knowledge into practice such as agriculture.”

Despite the huge effort from the research community to understand plant defense signaling and the many recent advances, there are still many unknowns in this area. For example, Tsuda says the mechanism of “how NLRs use PRRs is completely unknown.” In fact, Lu and Tsuda propose two models that might explain this interaction at a cellular level, one of which involves signaling between cells in a tissue, leading to Tsuda’s recommendation for researchers to examine immune responses at the single cell level.

“As many researchers are tackling this question, we will need to update our model on a yearly basis,” Tsuda concluded.

###

Read more in “Intimate Association of PRR- and NLR-Mediated Signaling in Plant Immunity.” This study was made available online in December 2020 ahead of final publication in issue in January 2021. This article is part of the Top 10 Unanswered Questions invited review series in MPMI. See the list of the top 10 unanswered questions here. You can also watch Dr. Kenichi Tsuda present on this review article in his free virtual seminar.

Media Contact
Ashley Carlin
[email protected]

Related Journal Article

http://dx.doi.org/10.1094/MPMI-08-20-0239-IA

Tags: Agricultural Production/EconomicsAgricultureBiologyCell BiologyFood/Food ScienceMicrobiologyMolecular BiologyPlant Sciences
Share12Tweet8Share2ShareShareShare2

Related Posts

Optimized Features Enhance Lithium-Ion Battery Lifespan Predictions

Optimized Features Enhance Lithium-Ion Battery Lifespan Predictions

September 30, 2025

Neuron-Reactive KIR+CD8+ T Cells Drive Autoimmune Encephalitis

September 30, 2025

Al/Y Co-Doping Boosts Na3V2(PO4)3 Cathode Performance

September 30, 2025

Transarterial Embolization or Hemispherectomy for Infant Epilepsy?

September 30, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    87 shares
    Share 35 Tweet 22
  • Physicists Develop Visible Time Crystal for the First Time

    73 shares
    Share 29 Tweet 18
  • How Donor Human Milk Storage Impacts Gut Health in Preemies

    59 shares
    Share 24 Tweet 15
  • Scientists Discover and Synthesize Active Compound in Magic Mushrooms Again

    56 shares
    Share 22 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Optimized Features Enhance Lithium-Ion Battery Lifespan Predictions

Neuron-Reactive KIR+CD8+ T Cells Drive Autoimmune Encephalitis

Al/Y Co-Doping Boosts Na3V2(PO4)3 Cathode Performance

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 60 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.