• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, August 6, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Two for the price of one: Mechanistic insights lead to drug repositioning

Bioengineer by Bioengineer
March 7, 2019
in Health
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Researchers at University of Tsukuba clarify the molecular mechanisms involved in the early stage of lung cancer, and identify two drugs with other clinical uses that could also be applied effectively in this disease

IMAGE

Credit: University of Tsukuba

Tsukuba, Japan – Lung adenocarcinoma is the most common type of lung cancer. Although various targeted drugs have been developed to treat it, they do not markedly improve the survival of patients. Part of the explanation for this impasse is a poor understanding of the molecular causes of this disease during the early stages.

A new study reported in the journal Clinical Cancer Research has raised hopes in this field by revealing how a cancer-promoting protein called stratifin causes lung adenocarcinoma to emerge. This finding by researchers at University of Tsukuba also enabled the identification of two drugs, currently used for treating other health conditions, which are promising for treating this type of lung cancer.

Building on previous work, the team analyzed how and when stratifin binds to SKP1. SKP1 is one component of a larger cellular complex that normally labels molecules in a process called ubiquitination, which condemns these labeled molecules to degradation. The researchers showed that a reversible modification of SKP1 promotes its binding to stratifin, rather than its typical inclusion within the ubiquitination-related complex.

“We used the overexpression of stratifin as well as its blocking by siRNA to clarify the effects on SKP1 in a lung adenocarcinoma cell line,” Masayuki Noguchi says. “The blocking of stratifin meant that SKP1 remained stable and could function in promoting the ubiquitination of errant proteins, some of which could be cancerous if not degraded by this process.”

Based on these findings, the team then undertook computer-based drug screening to find plausible candidates that could inhibit stratifin and prevent its binding to SKP1 and consequent disruption of ubiquitination. This screening of a database of drugs already in clinical use identified four promising candidates that were then narrowed down to two after testing their efficacy on lung cancer cells.

“We then performed additional testing of these two drugs on mice that had been injected with lung cancer cells,” lead author Aya Shiba-Ishii says. “We administered each of these drugs either the day after this injection or once tumor establishment had been confirmed. Our findings showed their success at blocking tumor formation or stopping or reversing the progression of tumors once they had formed.”

This novel approach of focusing on epigenetic changes early in adenocarcinogenesis raises hopes about more powerful tools to treat this condition. This work also shows the value of drug repositioning for lung cancer, given that such drugs have already passed through clinical trials and had their safety in humans confirmed.

###

Media Contact
Masataka Watanabe
[email protected]

Related Journal Article

http://dx.doi.org/10.1158/1078-0432.CCR-18-3631

Tags: BioinformaticsBiologycancerMolecular BiologyPharmaceutical SciencePulmonary/Respiratory Medicine
Share12Tweet8Share2ShareShareShare2

Related Posts

Multiplex Assay Detects HIV-1, HBV, and STRs

Multiplex Assay Detects HIV-1, HBV, and STRs

August 6, 2025
GABA Best Detects Early Parkinson’s Changes with RBD

GABA Best Detects Early Parkinson’s Changes with RBD

August 6, 2025

New Scale Uncovers Why People Use Benzodiazepines

August 5, 2025

Neutrophil-Albumin Ratio Predicts Outcomes in Myocarditis

August 5, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Neuropsychiatric Risks Linked to COVID-19 Revealed

    73 shares
    Share 29 Tweet 18
  • Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    61 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    46 shares
    Share 18 Tweet 12
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Multiplex Assay Detects HIV-1, HBV, and STRs

GABA Best Detects Early Parkinson’s Changes with RBD

Flavor and Bioactive Potential of Roasted Rice Bran Oil

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.