• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, July 30, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Stem Cells

Twin copies of a gene pair up in embryonic stem cells

Bioengineer by Bioengineer
March 7, 2015
in Stem Cells
Reading Time: 3 mins read
0
ADVERTISEMENT
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Imagine a pair of twins that everyone believed to be estranged, who turn out to be closer than anyone knew. A genetic version of this heartwarming tale might be taking place in our cells. We and other mammals have two copies of each gene, one from each parent. Each copy, or “allele,” was thought to remain physically apart from the other in the cell nucleus, but a new study finds that alleles can and do pair up in mammalian cells.

Intriguingly, the pairing of at least one set of alleles has been observed to coincide with a critical time in the life of a stem cell: the moment when it commits to develop into a specific cell type. This process is called differentiation.

stem cells

We and other mammals have two copies of each gene, and each copy, or “allele,” was thought to remain physically apart from the other in the cell nucleus. David Spector’s team now finds that the alleles of a specific gene, Oct4, can and do pair up in mammalian cells. (Oct4 gene alleles are labeled in green; other DNA is stained blue; cell nuclei are outlined in red). The Oct4 alleles were observed to pair up just as embryonic stem cells differentiated into specific cell types.

In work published today in Cell Stem Cell a team of researchers led by Professor David L. Spector at Cold Spring Harbor Laboratory (CSHL) showed that the two alleles of Oct4, a gene important in embryonic stem cells, did not come together randomly, at any time or place, but did so at the developmental point at which stem cells begin their maturation into specific cell types.

Spector, along with Megan Hogan, Ph.D., lead author on the new paper, and colleagues, began by observing the location within the cell nucleus of various genes known to be important in stem cells. “We examined hundreds of cells, and we made the interesting and unexpected finding that the two alleles of the Oct4 gene tended to co-localize together in about 25% of the cells,” Spector says. “This was really unexpected, but it’s the sort of image that’s worth a thousand words.”

Examining enough single cells to make sure the team was observing a widespread phenomenon was no easy task. “It was a lot of work, but I think in the end the pictures that come out of it, the stories that we have gotten out if it, makes it worth it,” says Hogan, a recent doctoral student in the Spector Lab and now a postdoctoral investigator at the Icahn School of Medicine at Mount Sinai.

To figure out if what they were seeing was physiologically important, the team studied whether they could manipulate the timing of the Oct4 pairing during differentiation. They used different methods to cause the stem cells to differentiate, and found that the more rapidly the cells differentiated, the earlier Oct4 pairing occurred. “This supported the notion that this was a potentially very exciting finding,” Spector says.

To confirm that the Oct4 pairing wasn’t something that only occurred in tissue culture, the team then looked in mouse embryos. “The pairing was equal to or even a little bit more frequent than in culture, and that was really comforting and extremely convincing to us that there is physiological relevance to this,” Spector says.

The team then wanted to figure out whether the Oct4 allelic pairing might play a role in regulating the gene’s expression, a process that eventually results in the production of the OCT4 protein. As the Oct4 alleles are not expressed after stem cell differentiation is initiated, their data suggests that Oct4 pairing occurs during the gene’s transition from an “on” to an “off” state.

One of the key questions to be answered in future research is why the Oct4 alleles come together. Spector hypothesizes that Oct4, being a key regulator of stem cell differentiation, may have to go through a special step while changing from the “on” to the “off” state.

Although the type of pairing exhibited by the Oct4 alleles has not been reported previously in mammals, it is similar to a process known as transvection that occurs frequently in fruit flies. In addition, Oct4 allele pairing exhibits similarities to the chromosomal interactions observed during X chromosome inactivation in female cells, and during V(D)J recombination in B cells of the immune system, according to Spector.

He suggests that such chromosome and allele pairing may be more common in mammals than previously thought. “One might want to look at other critical regulators of cellular or developmental processes, and there might be other cases where this also occurs,” he says. This could lead to a whole new avenue of study, and Spector and Hogan’s work could be just the beginning.

Story Source:

The above story is based on materials provided by Cold Spring Harbor Laboratory.

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Human stem cells treat spinal cord injury side effects in mice

October 4, 2016
blank

Research into fly development provides insights into blood vessel formation

September 30, 2016

Fertility genes required for sperm stem cells

September 28, 2016

Regulatory RNA essential to DNA damage response

September 27, 2016
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    58 shares
    Share 23 Tweet 15
  • USF Research Unveils AI Technology for Detecting Early PTSD Indicators in Youth Through Facial Analysis

    42 shares
    Share 17 Tweet 11
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    46 shares
    Share 18 Tweet 12
  • Engineered Cellular Communication Enhances CAR-T Therapy Effectiveness Against Glioblastoma

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Oligomeric Alpha-Synuclein Triggers Early Corticostriatal Dysfunction

Cutting-Edge Neuromodulation Advances in Parkinson’s Disease

Processing Environments Shape Food-Related Antibiotic Resistome

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.