• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, October 26, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Tuberculosis: Pharmacists develop new substance to counteract antimicrobial resistance

Bioengineer by Bioengineer
May 23, 2018
in Health
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Antimicrobial resistance is on the rise worldwide. This is becoming a problem for infectious diseases like tuberculosis as there are only a few active substances available to combat such diseases. Pharmacists at Martin Luther University Halle-Wittenberg (MLU) have now found a way to increase the efficacy of a common tuberculosis agent while, at the same time, reducing resistance to it. The research group presents its latest developments in the international journal Molecules.

Tuberculosis (TB) is a disease transmitted by the bacterium Mycobacterium tuberculosis and it often affects the respiratory tract. TB is usually treated with antibiotics. “Increasingly, however, bacteria are developing a resistance to common antibiotics,” says Professor Andreas Hilgeroth from the Institute of Pharmacy at MLU. If a patient does not respond to the standard treatment, stronger substances are required, which are sometimes accompanied by stronger side-effects. But bacteria can also become resistant to these stronger antibiotics. If a bacterial strain is resistant to several antibiotics, it is termed multi-resistant tuberculosis. In 2016, the World Health Organisation (WHO) recorded 490,000 cases of multi-resistant TB.

To remedy this problem, the researchers from Halle pursued an alternative approach: Instead of developing a new active substance, they sought a way to improve the efficacy of the existing drugs. The tuberculosis bacteria defend themselves against the antibiotics by pumping the substances out of their cell interior before they can take effect. “If this pumping mechanism is blocked, or at least hindered, inside the bacteria, this could improve the efficacy of current drugs,” Hilgeroth adds. The pharmacists developed a new chemical compound, combined it with conventional tuberculosis antibiotics and tested the effectiveness. They were able to demonstrate that the compound achieves very good results with the antibiotic isoniazid, and blocks the pumping mechanism in the bacteria. “This improves the effects of the isoniazid,” concludes Hilgeroth.

Tuberculosis is one of the most common infectious diseases worldwide and often proves fatal. According to WHO estimates, about 1.6 million people died of the disease in 2016.

###

Media Contact

Tom Leonhardt
[email protected]
49-345-552-1438

http://www.uni-halle.de

http://www.mdpi.com/1420-3049/23/4/825

Related Journal Article

http://dx.doi.org/10.3390/molecules23040825

Share13Tweet8Share2ShareShareShare2

Related Posts

Maternal Diabetes: Impact on Mental Health and Infants

October 26, 2025

CoDA-hd: Enhancing High-Dimensional Single Cell RNA-seq

October 26, 2025

IoT-Enabled Hypertension Monitoring: A Community Health Study

October 26, 2025

Nurses’ Insights on Hajj Mass Gathering Preparedness

October 26, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1283 shares
    Share 512 Tweet 320
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    310 shares
    Share 124 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    195 shares
    Share 78 Tweet 49
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    134 shares
    Share 54 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Exploring TIFY Family Genes in Panax Notoginseng

Maternal Diabetes: Impact on Mental Health and Infants

CoDA-hd: Enhancing High-Dimensional Single Cell RNA-seq

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.