• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, September 24, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Tsunami reveals human noise pollution in Hawaiian waters

Bioengineer by Bioengineer
October 30, 2017
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Duke University

DURHAM, N.C. — A tsunami that struck Hawaii in 2011 and caused a temporary halt to boat traffic has provided scientists a rare glimpse into what the bays might sound like without human activities.

The tsunami, triggered by the same earthquake that caused the Fukushima nuclear disaster in Japan, reached waters along the island of Hawaii's Kona Coast while a Duke University-lead team was recording underwater sound in four bays there.

"On the tsunami day, underwater sound levels during the loudest part of the day measured 98.8 decibels (re 1 uPa). On days when human activities in and near the bays weren't halted, we recorded sound pulses more than 16 times louder than that," said Heather L. Heenehan, a postdoctoral scientist at NOAA's Northeast Fisheries Science Center, who led the study as part of her doctoral dissertation at Duke's Nicholas School of the Environment.

Because sound waves travel and are amplified differently in water than in air, scientists use the reference "(re 1 uPa)" to express the relative loudness of sounds recorded underwater.

Noise from boat traffic in the four bays reached up to 125 decibels (re 1 uPa), while pulses from nearby sonar exercises reached 143 decibels (re 1 uPa). "Keep in mind that every increase of 10 decibels is perceived as a doubling in loudness," Heenehan said.

The new peer-reviewed paper was published online Oct. 24 in the journal Marine Pollution Bulletin. It is accessible free of charge to nonsubscribers through Dec. 10 via the sharelink https://authors.elsevier.com/a/1VwbQ,ashmJuN.

Using passive acoustic recorders, Heenehan and her colleagues measured and identified the sources of sound pollution in four shallow bays along the Kona Coast that are home to populations of spinner dolphins, a major eco-tourism draw. Conservationists have long feared that interactions caused by dolphin-encounter boat tours and other human activities disrupt the sleeping behaviors of the dolphins, who rest in the bays during the day to gain energy to hunt for food in offshore waters at night.

The new study validated these concerns by showing that humans create the loudest disruptions in each of the four bays. Boat traffic and sonar were significant causes of noise in all four bays. Sounds from boats involved in recreational activities in the bays and nearby fish farms also contributed to the daytime din to varying degrees.

Because different combinations of human noises affected each bay's soundscape differently, policy solutions will have to be tailored to individual situations, said David W. Johnston, a co-author on the study and associate professor of the practice of marine conservation ecology at Duke's Nicholas School.

"No one-size-fits-all approach will work," he said.

The new tsunami-enabled benchmark of what the bays sound like without human disruptions gives policymakers, conservationists and local communities an aspirational target to aim for when implementing future measures to reduce underwater sound levels, Heenehan said.

"This shows just how much human activities interrupt the acoustic environment of these animals at a critical resting time," she said.

###

Co-authors with Heenehan and Johnston on the new study were Sofie M. Van Parijs of the Northeast Fisheries Science Center; Lars Bejder and Julian A. Tyne of Murdoch University; Brandon L. Southall of the University of California Santa Cruz; and Hugh Southall of SEA, Inc.

Funding came from NOAA (grants #NA09NMF4390234 and #NA10NMF4540278); the Marine Mammal Commission (grant #E4061792); the State of Hawaii (grant #C32517); Dolphin Quest; and Duke University.

CITATION: "Natural and Anthropogenic Events Influence the Soundscapes of Four Bays on Hawaii Island," Heather L. Heenehan, Sofie M. Van Parijs, Lars Bejder, Julian A. Tyne, Brandon L. Southall, Hugh Southall and David W. Johnston; Oct. 24, 2017, Marine Pollution Bulletin. DOI: 10.1016/j.marpolbul.2017.06.065

Media Contact

Tim Lucas
[email protected]
919-613-8084
@DukeU

http://www.duke.edu

Related Journal Article

http://dx.doi.org/10.1016/j.marpolbul.2017.06.065

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Celebrating 100 Years Since the Birth of IVF Pioneer Sir Robert Edwards

September 24, 2025
blank

How Different ALK Fusion Variants Impact Lung Cancer Treatment Success

September 23, 2025

Tracking Motor Skills Across the Lifespan: Using Percentile Reference Curves in Practice

September 23, 2025

Chinese Scientists Uncover Neural Mechanisms Regulating Energy Expenditure in the Arcuate Hypothalamus

September 23, 2025
Please login to join discussion

POPULAR NEWS

  • Physicists Develop Visible Time Crystal for the First Time

    Physicists Develop Visible Time Crystal for the First Time

    69 shares
    Share 28 Tweet 17
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    50 shares
    Share 20 Tweet 13
  • Scientists Achieve Ambient-Temperature Light-Induced Heterolytic Hydrogen Dissociation

    49 shares
    Share 20 Tweet 12
  • Rapid Spread of Drug-Resistant Fungus Candidozyma auris in European Hospitals Prompts Urgent Warning from ECDC

    48 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Obesity’s Effects on Bones: Molecules and Metabolism

Electrolytes Impact Graphene Exfoliation and Supercapacitor Efficiency

Trends in Breast Cancer Screening for Older Women

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.