• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, October 5, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Trying to understand the water bear body plan

by
September 6, 2025
in Biology
Reading Time: 3 mins read
0
Amber with Beorn & Aerobius_credit_Marc_Mapalo_Reconstruction_Full Size_credit_Franz_Anthony
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Tardigrades, often called “water bears”, are fascinating microscopic organisms known for their incredible resilience—they can survive anything from deadly radiation to arctic temperatures to the vacuum of space. And though today they can be found anywhere on Earth where there’s water, the evolutionary history of these eight-legged micro-animals remains relatively mysterious because of their sparse fossil record.

Tardigrades, often called “water bears”, are fascinating microscopic organisms known for their incredible resilience—they can survive anything from deadly radiation to arctic temperatures to the vacuum of space. And though today they can be found anywhere on Earth where there’s water, the evolutionary history of these eight-legged micro-animals remains relatively mysterious because of their sparse fossil record.

Now, in an important study published in the journal Communications Biology, Associate Professor Javier Ortega-Hernández and PhD candidate Marc Mapalo (both in the Department of Organismic and Evolutionary Biology at Harvard) were able to shed some light on that history—as well as confirm another entry in the fossil record, which now stands at a mere four specimens.

In their study, the team took another look at a piece of amber found in Canada in the 1960s that contains the known fossil tardigrade Beorn leggi and another presumed tardigrade that couldn’t be substantively described at the time. Using confocal laser microscopy, a method usually employed for studying cell biology, the researchers were able to examine the tiny structures of the fossil tardigrades in stunning detail.

Ortega-Hernández and Mapalo’s study provides not only a definitive classification of B. leggi in the tardigrade family tree, but the identification of a new species of tardigrade as well.

“Both of them are found in the same piece of amber that dates to the Cretaceous Period, which means that these water bears lived alongside dinosaurs,” Ortega-Hernández said. “The images of B. leggi show seven well-preserved claws, with the claws that curve toward the body being smaller than those curving away from it, a pattern found in modern-day tardigrades.”

The second, previously unidentified specimen, had claws of similar length on each of its first three pairs of legs, but longer outer claws on its fourth set of legs. The team named it Aerobius dactylus, from “aero” meaning relating to air—because the fossil appears to be floating on air in the amber—and “dactylo”, or finger, after its one long claw.

The impetus for applying this new technology t0 known fossils came when Mapalo, a self-described “paleo-tardigradologist,” came across the 2019 book, Water Bears: The Biology of Tardigrades.

“In one of the chapters, they had a photo of the oldest fossil tardigrade that was visualized using both normal microscopy and confocal laser microscopy,” Mapalo said. “And that gave me the idea to use that with the fossil that I’m working with right now.”

That fossil, encased in a piece of amber from the Dominican Republic, turned out to be a new species of tardigrade. Mapalo, along with Ortega-Hernández and researchers from the New Jersey Institute of Technology, published their findings in a 2021 paper in the Proceedings of the Royal Society B.

Ortega-Hernández said that, in their latest study, both fossils serve as critical calibration points for what’s called molecular clock analysis, which help scientists estimate the timing of key evolutionary events.

For example, the latest findings suggest that modern tardigrades likely diverged during the Cambrian Period over 500 million years ago. The research also sheds light on the origin of cryptobiosis, the technical name for the remarkable ability of tardigrades to survive extreme conditions by entering a state of stasis.

”The study estimates that this survival mechanism likely evolved during the mid to late Paleozoic, which may have played a crucial role in helping tardigrades endure the end-Permian mass extinction, one of the most severe extinction events in Earth’s history,” Ortega-Hernández said.

Ortega-Hernández and Mapalo’s research represents a significant advancement in the field of paleontology because it offers new avenues for exploring the evolutionary history of one of the most resilient life forms on the planet.

“Before I started my PhD, there were only three known fossil tardigrades, and now there’s four,” Mapalo said. “Most, if not all, of the fossil tardigrades were really discovered by chance. With the Dominican amber, researchers were looking for fossil ants, and they happened to see a fossil tardigrade there.

“That’s why, whenever I have a chance, I always tell researchers who are working with amber fossils to check if maybe there’s another tardigrade in there, waiting to be found.”



Journal

Communications Biology

DOI

10.1038/s42003-024-06643-2

Article Title

Cretaceous amber inclusions illuminate the evolutionary origin of tardigrades

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Exploring Splicing Patterns in Medicinal Rheum Palmatum

October 5, 2025
NR2E1 Gene Methylation Influences Beef Cattle Adipocytes

NR2E1 Gene Methylation Influences Beef Cattle Adipocytes

October 5, 2025

“Rice Cultivar Transcriptome Reveals Heat Stress Response Genes”

October 4, 2025

Revolutionary Graph Network Enhances Protein Interaction Prediction

October 4, 2025

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    94 shares
    Share 38 Tweet 24
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    92 shares
    Share 37 Tweet 23
  • Physicists Develop Visible Time Crystal for the First Time

    75 shares
    Share 30 Tweet 19
  • New Insights Suggest ALS May Be an Autoimmune Disease

    70 shares
    Share 28 Tweet 18

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Transforming Cell Clusters with Differentiable Programming

Racial Disparities in Anticoagulant Use for Atrial Fibrillation

ICU Nurses’ Perspectives on End-of-Life Care

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 62 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.