• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, February 4, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Triglycerides control neurons in the reward circuit

Bioengineer by Bioengineer
March 5, 2020
in Chemistry
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Chloe Berland et al.


Energy-dense food, obesity and compulsive food intake bordering addiction: the scientific literature has been pointing to connections between these for years. Scientists at the CNRS and Université de Paris have just shown for the first time how fatty nutrients act on the brain in the reward circuit. Published in Cell Metabolism on 5 March 2020, these results shed new light on the connection between food and eating disorders.

This recent work, directed by scientists at the Unité de biologie fonctionnelle et adaptative (CNRS/Université de Paris)*, show that triglycerides, the nutrients that constitute animal fats, vegetable oils and dairy products, interact with certain neurons in the reward circuit and reduce their excitability in mice, both in vitro and in vivo. These neurons carry a specific type of dopamine-receptor, and their activity strengthens reward-seeking behaviour. The scientists also observed that the manipulation of triglyceride levels in the brain of mice changes many behaviours associated with dopamine, like pleasure and motivation to collect food.

The study is completed by observations of brain activity in humans in response to a food odour compared with their blood triglyceride level after a meal. The research team has shown that activity in the prefrontal cortex, one of the regions of the reward circuit that makes connections between a food’s odour, its taste and the pleasure that it causes, is directly correlated with the quantity of triglycerides circulating in the blood. The higher it is, the lower the prefrontal cortex’s response to a food odour. This suggests that the activity of important brain structures in the reward system can be directly modified by a lipid nutrient.

Usually, triglycerides only circulate in the blood after a meal. The exception is obese patients, for whom doctors often observe abnormally high triglyceride levels all day long. In this context, this study offers a new framework for potentially explaining why ever-wider access to rich foods may contribute to the establishment of compulsive dietary problems and increase obesity rates.

###

*- Researchers at the Centre interdisciplinaire de recherche en biologie (CNRS/INSERM/Collège de France), of the Institut de neurosciences cognitives et intégratives d’Aquitaine (CNRS/Université de Bordeaux) and Laboratoire neurosciences Paris-Seine (CNRS/INSERM/Sorbonne Université) participated in this work, and outside France, from the Helmholtz Diabetes Center in Munich, Yale University, the University of California San Diego and Novo Nordisk.

Media Contact
Francois Maginiot
[email protected]
33-144-964-309

Related Journal Article

http://dx.doi.org/10.1016/j.cmet.2020.02.010

Tags: BiologyEating Disorders/ObesityneurobiologyNeurochemistryNutrition/Nutrients
Share12Tweet8Share2ShareShareShare2

Related Posts

Researchers Reveal How Biochar Microzones Shield Crops from Toxic Cadmium Exposure

Researchers Reveal How Biochar Microzones Shield Crops from Toxic Cadmium Exposure

February 3, 2026
blank

Could We Have Witnessed a Black Hole Explosion? Physicists at UMass Amherst Say Yes—and It Might Explain Nearly Everything

February 3, 2026

Cavendish Laboratory and FormationQ Partner to Launch Applied Quantum Program Powered by IonQ Technology

February 3, 2026

Breakthrough in Solving a Classic Magnetism Mystery

February 3, 2026
Please login to join discussion

POPULAR NEWS

  • Enhancing Spiritual Care Education in Nursing Programs

    158 shares
    Share 63 Tweet 40
  • Robotic Ureteral Reconstruction: A Novel Approach

    81 shares
    Share 32 Tweet 20
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Air Ambulance Pre-Hospital Care Boosts Survival Chances in Critical Injuries

New Study Finds Physical Fitness Levels Similar in Transgender and Cisgender Women

Persistent Regional Disparities Remain in 24/7 Access to UK Air Ambulance Services

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.