• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, October 29, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Triglycerides control neurons in the reward circuit

Bioengineer by Bioengineer
March 5, 2020
in Chemistry
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Chloe Berland et al.


Energy-dense food, obesity and compulsive food intake bordering addiction: the scientific literature has been pointing to connections between these for years. Scientists at the CNRS and Université de Paris have just shown for the first time how fatty nutrients act on the brain in the reward circuit. Published in Cell Metabolism on 5 March 2020, these results shed new light on the connection between food and eating disorders.

This recent work, directed by scientists at the Unité de biologie fonctionnelle et adaptative (CNRS/Université de Paris)*, show that triglycerides, the nutrients that constitute animal fats, vegetable oils and dairy products, interact with certain neurons in the reward circuit and reduce their excitability in mice, both in vitro and in vivo. These neurons carry a specific type of dopamine-receptor, and their activity strengthens reward-seeking behaviour. The scientists also observed that the manipulation of triglyceride levels in the brain of mice changes many behaviours associated with dopamine, like pleasure and motivation to collect food.

The study is completed by observations of brain activity in humans in response to a food odour compared with their blood triglyceride level after a meal. The research team has shown that activity in the prefrontal cortex, one of the regions of the reward circuit that makes connections between a food’s odour, its taste and the pleasure that it causes, is directly correlated with the quantity of triglycerides circulating in the blood. The higher it is, the lower the prefrontal cortex’s response to a food odour. This suggests that the activity of important brain structures in the reward system can be directly modified by a lipid nutrient.

Usually, triglycerides only circulate in the blood after a meal. The exception is obese patients, for whom doctors often observe abnormally high triglyceride levels all day long. In this context, this study offers a new framework for potentially explaining why ever-wider access to rich foods may contribute to the establishment of compulsive dietary problems and increase obesity rates.

###

*- Researchers at the Centre interdisciplinaire de recherche en biologie (CNRS/INSERM/Collège de France), of the Institut de neurosciences cognitives et intégratives d’Aquitaine (CNRS/Université de Bordeaux) and Laboratoire neurosciences Paris-Seine (CNRS/INSERM/Sorbonne Université) participated in this work, and outside France, from the Helmholtz Diabetes Center in Munich, Yale University, the University of California San Diego and Novo Nordisk.

Media Contact
Francois Maginiot
[email protected]
33-144-964-309

Related Journal Article

http://dx.doi.org/10.1016/j.cmet.2020.02.010

Tags: BiologyEating Disorders/ObesityneurobiologyNeurochemistryNutrition/Nutrients
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Enhancing Hygiene and Usability of Menstrual Cups: A Scientific Breakthrough

October 29, 2025
Innovative Carbon Support Enhances Performance and Longevity of Low-Platinum Fuel Cells

Innovative Carbon Support Enhances Performance and Longevity of Low-Platinum Fuel Cells

October 29, 2025

FF-GFM Supports a More Stable and Safer Renewable Power System

October 29, 2025

Pyridinic-N Doped Phthalocyanine Enables Efficient and Durable CO₂ Electroreduction

October 29, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1289 shares
    Share 515 Tweet 322
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    311 shares
    Share 124 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    200 shares
    Share 80 Tweet 50
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    135 shares
    Share 54 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Nanobody Antivenom Targets Cobra, Mamba, Rinkhals

Sleep Quality, Mindfulness Link Neuroticism to Well-Being

Breakthrough in Spinal Cord Injury: Bioinformatics Paves the Way for Regenerative Therapy

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.