• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, October 28, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Tree loss from bark-beetle infestation impacts elk habitat

Bioengineer by Bioengineer
February 6, 2019
in Biology
Reading Time: 1 min read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Although elk typically adapt to forest disturbances such as forest fires and logging, a new Journal of Wildlife Management study found that during the summer, elk avoided areas with extensive tree mortality that has occurred due to the bark-beetle epidemic in the northern portions of the Rocky Mountains in the United States.

Avoidance of beetle-killed forest by elk during the summer has led to a decline in preferred habitat for elk that will be of importance to many wildlife and land managers responsible for managing elk populations in areas impacted by the bark-beetle epidemic.

“Although it is common following forest disturbances for elk to seek out and capitalize on the resulting increases in highly palatable and nutritious forage, during the summer months, elk in our study area fairly consistently avoided beetle-kill. This result is somewhat counter to how we typically think elk respond to forest disturbances,” said lead author Bryan G. Lamont, of the University of Wyoming. “It appears there are some subtle, but real differences between disturbances such as forest fires and the bark-beetle epidemic.”

Lamont noted that for elk in the study, the increases in the number of downed trees and loss of canopy cover seemed to outweigh the meager increases in understory in bark-beetle affected areas. “Ultimately this means that if elk are avoiding beetle-kill areas, this translates to much less forest habitat that elk typically would utilize during the summer,” he said.

###

Media Contact
Penny Smith
[email protected]
http://dx.doi.org/10.1002/jwmg.21631

Tags: BiologyEcology/EnvironmentForestry
Share12Tweet7Share2ShareShareShare1

Related Posts

AAAS Expands Science Partner Journal Program with Launch of Cancer Communications

AAAS Expands Science Partner Journal Program with Launch of Cancer Communications

October 28, 2025
blank

Z-GENIE: Easy Tool for Predicting Z-DNA Regions

October 28, 2025

Exploring Taar Expression in Mandarin Fish Response

October 28, 2025

Uncovering Hidden Carbon Dioxide Absorption: Russian Scientists Reveal Plant Roots’ Secret Role

October 27, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1287 shares
    Share 514 Tweet 321
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    310 shares
    Share 124 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    198 shares
    Share 79 Tweet 50
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    135 shares
    Share 54 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Enhancing Nurses’ Seizure Management Through Flipped Learning

Amlodipine Targets Glioma Stem Cells by Degrading EGFR

Smart Hydrogel Boosts Diabetic Foot Regeneration Mechanisms

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.