• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, September 21, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Tree growth model assists breeding for more wood

Bioengineer by Bioengineer
March 6, 2017
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

PULLMAN, Wash. – A meeting in a forest between a biologist and a mathematician could lead to thicker, faster growing trees.

"Mathematicians like translating biological processes into numbers," said Andrei Smertenko, assistant professor in Washington State University's Institute of Biological Chemistry. "I'm a biologist, and I want to help grow stronger, better trees."

Breeding trees is a time-consuming and imprecise field, with breeders relying on a few genetic markers and what they can see. It takes years before they see the traits they're looking for in a young tree.

To help speed things up, Smertenko and his WSU Department of Mathematics colleagues Vladyslav Oles and Alexander Panchenko have developed a new model that could help make tree breeding much easier.

How hormones, genes impact growth

The group met three years ago at a party in a forest and started talking about trees, Smertenko's interest. That chance meeting eventually led to the model, which was recently published in the journal PLOS One under the title "Modeling hormonal control of cambium proliferation."

"Radial growth, or thickness, is known to be controlled by many hormones," Smertenko said. "But how each hormone contributes to the radial growth remains poorly understood. So the model simulates how interactions between hormones and key genes would impact radial growth."

Calculations require systematic evaluation of millions of different situations in the cells, he said. Basically, the model runs billions of simulations of genetic interactions to predict which trees are likely to make more or less wood as they grow.

Model focuses on cambium

The model focuses on understanding molecular processes in cambium, a type of stem cell that can sense availability of nutrients in soil and photosynthetic activity in shoots. Cambium integrates these signals with plant height to produce the required amount of wood each growth season, Smertenko said.

"Wood is very expensive for a tree to produce, from a resource perspective," he said. "Allocating too many resources to wood production would ultimately limit plant reproduction potential. And we can't currently measure or study cambium in a living plant because it stops working as soon as we do anything to the plant.

"So if we can't observe the tissue directly, then making a mathematical model is the best solution we have so far," he said.

Cambium controls tree growth and, during the active season, it divides quickly. If you look at annual rings of a tree, the light part reflects higher cambium activity, as in spring, and the darker rings are periods of slow growth, as in winter.

Model identifies breeding lines

In a genetically diverse population of trees, breeders can use the information from the model to see which trees are more likely to generate more wood.

"Some breeders may want skinnier trees, or thicker trees," Smertenko said. "From a science point of view, our model can be used to identify different breeding lines with higher or lower wood production."

So far, the model only works on deciduous trees, like oak or poplar, and not on coniferous trees, like pine or fir, because the growth process is better understood in deciduous trees, Smertenko said.

###

Media Contact

Andrei Smertenko, WSU Institute of Biological Chemistry
[email protected]
509-335-5795
@WSUNews

Washington State University

############

Story Source: Materials provided by Scienmag

Share12Tweet7Share2ShareShareShare1

Related Posts

TMolNet: Revolutionizing Molecular Property Prediction

September 21, 2025

NICU Families’ Stories Through Staff Perspectives

September 21, 2025

CT Scans in Kids: Cancer Risk Insights

September 20, 2025

Revealing Tendon Changes from Rotator Cuff Tears

September 20, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    156 shares
    Share 62 Tweet 39
  • Physicists Develop Visible Time Crystal for the First Time

    68 shares
    Share 27 Tweet 17
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    49 shares
    Share 20 Tweet 12
  • Scientists Achieve Ambient-Temperature Light-Induced Heterolytic Hydrogen Dissociation

    48 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

TMolNet: Revolutionizing Molecular Property Prediction

NICU Families’ Stories Through Staff Perspectives

CT Scans in Kids: Cancer Risk Insights

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.