• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, September 22, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Treating brain cancer with drug previously used on canines 

Bioengineer by Bioengineer
March 21, 2022
in Biology
Reading Time: 3 mins read
0
Rossmeisl
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

The National Institutes of Health is awarding a $3.8 million grant to John Rossmeisl, the Dr. and Mrs. Dorsey Taylor Mahin Professor of Neurology and Neurosurgery at the Virginia-Maryland College of Veterinary Medicine, and Waldemar Debinski, cancer biology professor at the Wake Forest School of Medicine. The team will treat human brain cancer with a drug they have previously used to treat canines.  

Rossmeisl

Credit: Virginia Tech

The National Institutes of Health is awarding a $3.8 million grant to John Rossmeisl, the Dr. and Mrs. Dorsey Taylor Mahin Professor of Neurology and Neurosurgery at the Virginia-Maryland College of Veterinary Medicine, and Waldemar Debinski, cancer biology professor at the Wake Forest School of Medicine. The team will treat human brain cancer with a drug they have previously used to treat canines.  

Over the course of five years, the grant will allow Rossmeisl and Debinski to hone a new method to treat glioblastoma, an aggressive and deadly form of brain cancer. The first two years will continue their research on treating canine glioma, and the last three years will treat patients in a clinical trial at Wake Forest Baptist Comprehensive Cancer Center. 

The research will characterize in-depth the antitumor activity, safety, and pharmacokinetics of the drug Rossmeisl and Debinski have used in their canine cancer research.  

Rossmeisl is the interim director of the Animal Cancer Care and Research Center, a state-of-the-art clinical and research facility in Roanoke and one of the college’s three hospitals. Additionally, he serves as the associate department head of the Department of Small Animal Clinical Sciences and heads the Veterinary and Comparative Neuro-oncology Laboratory. He has collaborated with Debinski, director of the Brain Tumor Center of Excellence at Wake Forest School of Medicine’s Comprehensive Cancer Center, since the early 2000s.

An earlier version of the drug previously went through human clinical trials, but it unfortunately failed. It cannot be given orally or injected, which presents a challenge.  

“One of the major reasons why that clinical drug trial failed was not because the drug isn’t effective against the tumor — it just wasn’t delivered effectively to the target,” explained Rossmeisl.  

The team has refined a technique called convection-enhanced delivery (CED) to place catheters into the tumor tissue to administer the drug directly. The approach significantly improved the ability of the CED technique to efficiently and effectively deliver drugs to glioblastoma compared to previous trials, which has been fundamental to evaluating the safety and preliminary efficacy of the drug in dogs.  

The version of the drug used in the previous human trials targeted one receptor in the tumor. The version in the upcoming trials targets four. The drug not only kills the cancer cells, but when the cells die, the immune system initiates an immune response, killing the tumor more effectively. Part of the grant will be used to better characterize what that immune response is in addition to further refining the delivery method through mapping and modeling. 

The team recently finished a canine clinical trial that examined the toxicity of the drug. The team gave six times higher a dose than that which has been given to humans with no toxicity, and results of early trials showed that half of the dogs experienced tumor shrinkage, a remarkable achievement.

This research aligns the college’s One Health approach to veterinary medicine, which recognizes the dynamic interdependence of human, animal, and environmental health and promotes interdisciplinary collaboration.  

“Personally, this is the ultimate embodiment of what I want to do. I put something in dogs that not only helps dogs, but it might help someone’s father, mother, sister, brother, daughter, or son. If you statistically look at cancer clinical trials, the odds are stacked against us. But to me, that’s far less important than the fact that at least we’re going to try,” said Rossmeisl. 



Share13Tweet8Share2ShareShareShare2

Related Posts

blank

Exploring Enterococcus faecium Infections in Mexican Children

September 22, 2025

Standardized Extract Boosts Immunity in Chemotherapy Mice

September 20, 2025

Enhancing Labeo rohita Growth with Trypsin Nanoparticles

September 20, 2025

Comparing ZISO-Driven Carotenoid Production in Dunaliella Species

September 19, 2025

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    156 shares
    Share 62 Tweet 39
  • Physicists Develop Visible Time Crystal for the First Time

    68 shares
    Share 27 Tweet 17
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    50 shares
    Share 20 Tweet 13
  • Scientists Achieve Ambient-Temperature Light-Induced Heterolytic Hydrogen Dissociation

    48 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Latest Trends in Opioid Prescribing Practices for Cancer Patients Revealed

Unlocking the Mysteries of Snapdragon: Insights into Cutting-Edge Technology

Efficient Deep-Blue CsPbBr3 LEDs Meet Rec.2020

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.