• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, September 13, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Transfer RNA research addresses a blind spot in understanding of human genes

Bioengineer by Bioengineer
May 17, 2018
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

The human genome includes more than 500 genes for transfer RNA (tRNA) molecules, which are essential for making proteins in all living organisms. Scientists have long understood the fundamental role of tRNAs in translating genetic code into proteins, but in recent years they have discovered new and unexpected functions for these molecules, including specialized regulatory roles in the cell sometimes carried out by small fragments of tRNAs.

"It's a whole new layer of regulation that no one expected. We're at the stage where people are just starting to realize that tRNA fragments are actually regulatory molecules and are interacting with a wide variety of things in the cell," said Todd Lowe, professor of biomolecular engineering at UC Santa Cruz.

Recent studies suggest tRNAs and tRNA fragments are involved in cellular processes associated with diseases such as cancer, viral infections, and neurodegenerative disorders.

Lowe's lab is at the forefront of this burgeoning field. He and his collaborators developed a special RNA sequencing technique (ARM-seq) needed to detect and sequence tRNA fragments in the cells of humans and other organisms. Bioinformatics software Lowe developed as a graduate student to find and annotate tRNA genes in genome sequences is still widely used by researchers and genomics centers, including the U.S. National Center for Biotechnology Information and the European Bioinformatics Institute. His lab also maintains the rapidly growing Genomics tRNA Database used by researchers around the world, and he developed a new system for naming tRNA genes that has been adopted by the Human Gene Nomenclature Committee and other databases.

The National Human Genome Research Institute has just awarded a five-year, $2.7 million grant to support Lowe's continued international leadership in the study of tRNA gene function. He has had NIH funding to study transfer RNA since 2012, and the new grant will fund ongoing efforts to characterize all 500 human tRNA genes and determine when and where (in which tissues and cell types) they are active. Lowe's research has already shown that these genes are tightly regulated–fewer than a third of them are turned on in all cells, while most are active only in stem cells or in certain tissues.

Lowe's comprehensive approach to characterizing tRNA genes will help researchers understand the full range of their roles in the cell, both as mature, full-length tRNAs and as tRNA fragments, which are derived from mature tRNAs as they are broken down and recycled by the cell. Researchers can use CRISPR genome editing technology to study the effects of knocking out specific tRNA genes, and Lowe plans to design the molecular tools (CRISPR guide RNAs for all human tRNA genes) needed to do this.

"We're just starting to understand all of the functions of transfer RNAs. This project will fill in a gaping hole in our understanding of human genes," Lowe said.

One reason there are so many tRNA genes, he said, is to enable cells to ramp up production of tRNA during periods of rapid growth. If tRNAs are essential to rapidly growing cells, such as cancer cells, they could be a potential target for novel drugs. But researchers will need much more information about the roles of different tRNAs to identify the best targets. "We've identified the tightly regulated ones that are only turned on in rapidly growing cells, and we're now studying those," Lowe said.

Transfer RNA may be the oldest type of RNA molecule in the cell, and its fundamental role in gene translation has not changed much as life evolved. Secondary functions have arisen in the course of evolution, however, and more complex organisms seem to have acquired more tRNA genes and more roles for tRNA fragments, Lowe said.

"Our understanding of how tRNA is used in the cell is changing rapidly, and now it's a matter of applying the technologies we have to systematically understand all the roles of these molecules and how we can potentially manipulate them or develop drugs to interact with them," he said.

###

Media Contact

Tim Stephens
[email protected]
831-459-4352
@ucsc

Home

Share12Tweet7Share2ShareShareShare1

Related Posts

blank

Evaluating Energy Digestibility in Quail Feed Ingredients

September 12, 2025

Gene Body Methylation Drives Diversity in Arabidopsis

September 12, 2025

Auranofin’s Anti-Leishmanial Effects: Lab and Animal Studies

September 12, 2025

Fungal Effector Undermines Maize Immunity by Targeting ZmLecRK1

September 12, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    152 shares
    Share 61 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    65 shares
    Share 26 Tweet 16
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Insights on Menstrual Health in Eating Disorder Units

Nicotine Dependence Linked to Health Behaviors in Korean Smokers

Novel V2O5/ZnO Nanocomposite Electrodes for Energy Storage

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.