• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, September 29, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Transcription factor helps tumors grow in low oxygen, resist anticancer therapies

Bioengineer by Bioengineer
March 19, 2018
in Health
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

An international team of researchers found how cancer cells respond to DNA damage signaling when in low oxygen, or hypoxia. Through comprehensive gene expression analyses, the team determined how one family of genes controls DNA damage response, as well as how it weakens the effectiveness of anticancer therapies.

Our bodies have strict molecular mechanisms that help us respond to hypoxia. These mechanisms are not just limited to helping us adapt to higher altitudes when climbing up a mountain. They also arise in diseases such as anemia, diabetes, or cancers. In the case of a new study led by Keiji Tanimoto's team at Hiroshima University (HU), hypoxia indicates developments or poor prognoses of cancer.

Initially, a tumor growing within a patient depends upon oxygen and nutrients from his or her blood. Eventually, however, a tumor can outgrow this supply of nutrients and end up in hypoxia. This stage does not spell the end of growth – by changing its own metabolism, a tumor can adapt to growing in low oxygen.

"In the medical biology field, we generally knew that cells in hypoxia appeared mutated, but we never quite knew how it happened," Tanimoto said. He is the primary author of this study, as well as Assistant Professor in HU's Research Institute for Radiation Biology and Medicine. "This led us to think that hypoxia may affect a tumor's ability to recognize and repair damaged DNA or program its cells to die."

Hypoxic tumors tend to be resistant to anticancer treatments. Radiation therapy, for example, kills tumor cells by destroying their DNA. After exposing cancer cells to hypoxia, though, Tanimoto's group found that hypoxic cells could better resist radiation treatment than cells treated in normal oxygen levels.

To understand what was happening at the molecular level, Tanimoto's group analyzed gene expression of the hypoxic cancer cells. They were particularly interested in Differentiated Embryo Chondrocyte, or DEC. The team found that DEC levels increased in hypoxic cells, which stalled the transcription of DNA repair genes.

Without a way to signal that their DNA must be repaired, cells with damaged DNA can keep growing uncontrollably. Ultimately, the lab found that suppressing DEC2, one form of DEC, made cancer cells more sensitive to radiation treatment and restored cell death signaling.

Understanding how cancerous cells behave in low oxygen may provide new strategies for tackling cancer. "We hope this study leads to the development of drugs that can modify hypoxic signaling and make tumors more sensitive to anticancer therapy," Tanimoto said. "From our results, DEC2 could be an effective target for these drugs."

###

Media Contact

Nori Miyokawa
[email protected]
81-824-244-396
@Hiroshima_Univ

http://www.hiroshima-u.ac.jp/index.html

http://huscf.hiroshima-u.ac.jp/2018/03/20/dec2-in-hypoxic-cancer-cells/

Related Journal Article

http://dx.doi.org/10.1371/journal.pone.0192136

Share12Tweet7Share2ShareShareShare1

Related Posts

UCSF Assistant Professor Honored with 2025 Dr. Nanette K. Wenger Research Goes Red® Award

UCSF Assistant Professor Honored with 2025 Dr. Nanette K. Wenger Research Goes Red® Award

September 29, 2025

Study Finds High Rates of Ultra-Processed Food Addiction Among Older Adults, Particularly Gen X Women

September 29, 2025

Exploring Intrinsic Motivation in Laissez-Faire Leadership Effects

September 29, 2025

Mitochondria: Key Players in Ovarian Ageing Inflammation

September 29, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    86 shares
    Share 34 Tweet 22
  • Physicists Develop Visible Time Crystal for the First Time

    73 shares
    Share 29 Tweet 18
  • How Donor Human Milk Storage Impacts Gut Health in Preemies

    56 shares
    Share 22 Tweet 14
  • Scientists Discover and Synthesize Active Compound in Magic Mushrooms Again

    56 shares
    Share 22 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

TTUHSC Researchers Discover Resilience of Blood-Brain Barrier in Alzheimer’s Disease Model

Unique DNA Regions for Purpureocillium lilacinum Markers Discovered

Calcification: Key Indicator of Lung Metastasis in Osteosarcoma

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 63 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.