• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, September 21, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Transcranial magnetic stimulation design goes deeper into brain

Bioengineer by Bioengineer
November 29, 2022
in Biology
Reading Time: 3 mins read
0
A new transcranial magnetic stimulation array with a special geometrical-shaped magnet structure reaches deeper brain tissue than conventional methods.
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

WASHINGTON, Nov. 29, 2022 – As a noninvasive neuromodulation method, transcranial magnetic stimulation (TMS) shows great potential to treat a range of mental and psychiatric diseases, including major depression.

A new transcranial magnetic stimulation array with a special geometrical-shaped magnet structure reaches deeper brain tissue than conventional methods.

Credit: Xiao Fang

WASHINGTON, Nov. 29, 2022 – As a noninvasive neuromodulation method, transcranial magnetic stimulation (TMS) shows great potential to treat a range of mental and psychiatric diseases, including major depression.

Stimulating the deep brain helps researchers explore the causes of and possible treatments for psychiatric diseases, but current methods don’t go quite deep enough and are largely restricted to superficial targets within the brain.

In AIP Advances, from AIP Publishing, a group of researchers in China from Chengdu University of Technology and Huazhong University of Science and Technology present a new TMS array with a special geometrical-shaped magnet structure to help stimulate deeper tissue within the brain.

“Considering the approximate spherical structure of the human head, I wondered if special-shaped coils could be more advantageous than flat coils,” said Xiao Fang, a co-author who has worked on TMS for nearly eight years. “When I was studying at Wuhan National High Magnetic Field Center in 2016, we had a magnet design department in our lab, and they did some research regarding special-shaped magnets for electromagnetic shaping. After seeing their research posters, it inspired us to try to use shaped magnets in bioelectromagnetic stimulation.” 

Inside the brain, external stimuli transmit information through neurons with electrical and chemical signals.

“Deep brain stimulation taps into the penetrating ability of an electromagnetic field or signal to target the membrane potential of deep brain neurons and change the polarization or depolarization effect to achieve neuromodulation,” said Fang.

The group’s new spatially symmetric array, based on a curved type of coil, offers advantages over traditional TMS coils in deep brain stimulation performance.

“It enables focalized stimulation within the deep brain so fewer untargeted tissues are exposed to strong stimulation,” said Fang. “And the location of the stimulation target generated by the array can be flexibly and continuously adjusted.”

This array’s special geometric design enables deep brain focused stimulation 11 centimeters below the scalp.

“That is 1.67 times deeper than conventional planar stimulation arrays when producing the same focusing area, which effectively improves the stimulation effect,” Fang said.

The group’s design is mainly intended for deep brain stimulation, such as the treatment of major depression, and its target area is the ventromedial prefrontal cortex region located 7 centimeters beneath the human scalp.

###

The article, “Noninvasive focalized stimulation in deep brain using the spatially symmetric array,” is authored by Xiao Fang, Chen Yun, Chaoxu Zeng, Hongfa Ding, Yongheng Huang, Wi Liu, and Yaoyao Luo. It will appear in AIP Advances on Nov. 29, 2022 (DOI: 10.1063/5.0121692). After that date, it can be accessed at https://aip.scitation.org/doi/10.1063/5.0121692.

ABOUT THE JOURNAL

AIP Advances is an open access journal publishing in all areas of physical sciences—applied, theoretical, and experimental. The inclusive scope of AIP Advances makes it an essential outlet for scientists across the physical sciences.  See https://aip.scitation.org/journal/adv.

###



Journal

AIP Advances

DOI

10.1063/5.0121692

Method of Research

Experimental study

Article Title

Noninvasive focalized stimulation in deep brain using the spatially symmetric array

Article Publication Date

29-Nov-2022

Share12Tweet8Share2ShareShareShare2

Related Posts

Standardized Extract Boosts Immunity in Chemotherapy Mice

September 20, 2025
Enhancing Labeo rohita Growth with Trypsin Nanoparticles

Enhancing Labeo rohita Growth with Trypsin Nanoparticles

September 20, 2025

Comparing ZISO-Driven Carotenoid Production in Dunaliella Species

September 19, 2025

When Metabolism Powers More Than Just Fuel: Exploring Its Expanded Role

September 19, 2025

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    156 shares
    Share 62 Tweet 39
  • Physicists Develop Visible Time Crystal for the First Time

    68 shares
    Share 27 Tweet 17
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    49 shares
    Share 20 Tweet 12
  • Scientists Achieve Ambient-Temperature Light-Induced Heterolytic Hydrogen Dissociation

    48 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Key Drivers of Corporate Governance in Burundi’s Cooperatives

Revolutionizing Sustainable Construction: The Role of Cardboard and Earth

TMolNet: Revolutionizing Molecular Property Prediction

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.