• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, February 5, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

‘Traffic control’ system for mucin and insulin secretion identified

Bioengineer by Bioengineer
July 3, 2023
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Researchers from the Centre for Genomic Regulation (CRG) in Barcelona have published a study in the journal Nature Communications that reveals how cells carry out the controlled release of mucins and insulin, two crucial proteins for human health.  

Cells secreting mucins over a 30-minute period

Credit: Centre for Genomic Regulation/ Wojnacki et al. Nature Communications DOI: 10.1038/s41467-023-39277-9

Researchers from the Centre for Genomic Regulation (CRG) in Barcelona have published a study in the journal Nature Communications that reveals how cells carry out the controlled release of mucins and insulin, two crucial proteins for human health.  

Mucins, the main component of mucous, form a protective barrier and lubricant on our body surfaces such as the respiratory and digestive tracts. Humans secrete roughly one litre of mucins per day, which are released by specialized cells in a controlled manner to ensure the right quantity for proper bodily functions. 

“An imbalance in mucin secretion, whether excessive or inadequate, can lead to respiratory and digestive tract diseases ranging from chronic obstructive pulmonary disease (COPD) to ulcerative colitis,” says José Wojnacki, first author of the study and postdoctoral researcher at the Centre for Genomic Regulation “Similarly, insulin, a hormone secreted by the pancreas, is instrumental in the regulation of blood glucose levels. Defects in insulin production are the root cause of diabetes,” he adds. 

Cells store proteins like mucins and insulin in sacs or ‘granules’. When the cell needs to release these substances, the granules attach to the cell’s outer layer, the membrane, and release their contents outside. The study found that a protein known as tetraspanin-8, present on the cell membrane, acts like a gatekeeper during secretion, deciding which granules containing mucin or insulin get to attach to the membrane and when. 

The study demonstrates that the regulated secretion of mucins and insulin is biphasic, meaning a first rapid release of pre-docked granules is followed by a second, slower release of granules from a reserve pool. The study also shows that fusion of granules loaded with mucins requires a protein called syntaxin-2.  

Tetraspanin-8 sequesters syntaxin-2, limiting the amount of mucin release. In the absence of tetraspanin-8, the researchers observed a doubling of mucin secretion, as more syntaxin-2 is available for the docking and fusion of granules. This discovery also extended to insulin release, indicating a universal mechanism that could have significant implications for understanding how cells secrete these vital proteins based on physiological needs. 

“If the cell is a busy city, the granules are lorries loaded with cargoes like mucins and insulin. The city’s gate to the outside world is opened by proteins like syntaxin-2. In this analogy, tetraspanin-8 works like traffic control at the city’s boundary, controlling the number of syntaxin 2 molecule available to open gates for lorries to dock and export their cargoes. This controlled management ensures just the right number of mucins or insulin is released based on bodily needs” says ICREA Research Professor Vivek Malhotra, corresponding author of the study and researcher at the Centre for Genomic Regulation. 

“Tetraspanin-8 is an easy target for developing chemicals to control its function and therefore a means to reset deregulated mucin and insulin secretion noted in the associated human pathologies,” adds Dr. Malhotra. 

The researchers are now working to test the role of tetraspanin-8 in more advanced models that represent the complex physiology of the colon, airways, and pancreas to understand the influence of other cells that may co-function to control the net secretion of mucins and insulin. 



Journal

Nature Communications

DOI

10.1038/s41467-023-39277-9

Method of Research

Experimental study

Subject of Research

Cells

Article Title

Tetraspanin-8 sequesters syntaxin-2 to control biphasic release propensity of mucin granules

Article Publication Date

22-Jun-2023

Share12Tweet8Share2ShareShareShare2

Related Posts

MIRO1 Drives Mitochondrial Fusion for Plant Immunity

MIRO1 Drives Mitochondrial Fusion for Plant Immunity

February 5, 2026
blank

Sudanese Copts Evolve Rapid Resistance to Malaria Through Accelerated Evolutionary Process

February 5, 2026

Are Returning Pumas Threatening Patagonian Penguins? New Study Uncovers the Risks

February 5, 2026

Burn Injuries: A Crucial Factor in Shaping Human Evolution, Study Reveals

February 5, 2026

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    81 shares
    Share 32 Tweet 20
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

University of Maryland School of Medicine Scientists Find Vaginal Bacteria Exhibit Variable Behavior

NEO-STIM Advances Personalized Neoantigen T Cell Therapy

New Triplet Therapies for Relapsed Follicular Lymphoma

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.