• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, October 7, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Tracking the HI virus

Bioengineer by Bioengineer
October 2, 2019
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Researchers make visible, how AIDS pathogens multiply in the body

IMAGE

Credit: (Image: Jan-Peter Kasper/FSU)

(Jena, Germany) In order to treat diseases better, we must understand how they arise. A European research team led by Prof. Christian Eggeling from the Friedrich Schiller University Jena, the Leibniz Institute of Photonic Technology (Leibniz IPHT), and the University of Oxford has now succeeded in using high-resolution imaging to make visible to the millisecond how the HI virus spreads between living cells and which molecules it requires for this purpose. Using superresolution STED fluorescence microscopy, the researchers provide direct proof for the first time that the AIDS pathogen creates a certain lipid environment for replication. “We have thus created a method for investigating how this multiplication can potentially be prevented,” says Christian Eggeling. The research team published the results in the journal Science Advances on October 2, 2019.

Focus on the plasma membrane of the host cell

The researchers focused on the sluice through which the HI virus (Human Immunodeficiency Virus) emerges from the cell after having infected it: the plasma membrane of the host cell. They used the protein Gag as a marker, which coordinates the processes involved in the maturation of the virus. “Where this protein accumulates, the decisive processes take place that lead to the virus releasing itself and infecting other cells,” explains Christian Eggeling. In order to decipher these, the researchers examined the diffusion at this budding site of the virus particle. They found out that only certain lipids interact with the HI virus. Although these lipids were already known in principle, the research team was able to prove this interaction directly in living and infected cells for the first time.

Point of attack to prevent the virus from multiplying

“This provides us with a potential target for antiviral drugs,” says Christian Eggeling. “Knowing which molecules the HI virus needs in order to leave the cell and multiply is a crucial prerequisite for investigating how this can be prevented. With our technology, we can now follow this directly.” Christian Eggeling and his team now want to develop antibodies that attack precisely these molecules — and thus suppress the spread of the virus.

“We not only want to study these antibodies from a medical point of view, but also to find out how their biophysical interaction can be used to enhance their efficacy,” says Eggeling, describing his research program. “For this purpose, we analyze biological processes — namely the interaction of cells and molecules – with the aid of physical parameters such as diffusion.” About a year ago, the physicist moved from Oxford to Jena. In addition to his professorship for “Superresolution Microscopy” at the university, he heads the research department “Biophysical Imaging” at Leibniz IPHT. He also leads his research group at the MRC Human Immunology Unit and at the Wolfson Imaging Centre of the Weatherall Institute of Molecular Medicine at Oxford University.

Christian Eggeling combines spatially superresolution fluorescence microscopy techniques with methods that enable the movement of labelled molecules to be tracked in real time in order to understand how diseases develop at the smallest molecular level. This enables him and his team of researchers to investigate individual molecules – for example in cell membranes – in living cells spatially and temporally. “This enables us to reveal cellular mechanisms at the molecular level that are far too fast for previous investigation methods and run on spatial scales that are far too small.”

Christian Eggeling has already researched new superresolution fluorescence microscopy techniques at the Max Planck Institute for Biophysical Chemistry in Göttingen in the group of Stefan W. Hell. Together with Eric Betzig and William E. Moerner, Stefan Hell received the Nobel Prize for Chemistry in 2014. In Jena, Eggeling is now working closely with biologists and physicians to find out how these methods can be used to detect diseases earlier and more accurately and possibly even prevent them.

###

Media Contact
Christian Eggeling
[email protected]

Original Source

https://www.uni-jena.de/191002_HIVsehen_en

Tags: AIDS/HIVChemistry/Physics/Materials SciencesOptics
Share12Tweet8Share2ShareShareShare2

Related Posts

Two-Step Excitation Powers and Directs Exotic Nanolight

Two-Step Excitation Powers and Directs Exotic Nanolight

October 7, 2025
blank

Scientists Unveil Breakthrough Compound Poised to Revolutionize Traumatic Brain Injury Treatment

October 7, 2025

Transforming Gemstone Polishing Waste into Smart Cement: A Sustainable Innovation

October 7, 2025

Advanced Battery Technology Predicts If Your EV Will Make It Home

October 7, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    788 shares
    Share 315 Tweet 197
  • New Study Reveals the Science Behind Exercise and Weight Loss

    98 shares
    Share 39 Tweet 25
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    94 shares
    Share 38 Tweet 24
  • Ohio State Study Reveals Protein Quality Control Breakdown as Key Factor in Cancer Immunotherapy Failure

    76 shares
    Share 30 Tweet 19

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Tracking Cancer Screening Adherence Across U.S. Populations

Optimizing Housing Designs to Cut Multi-Hazard Losses

CSF-1R Inhibition Halts Osteosarcoma Growth

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 63 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.