• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, September 17, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Tracing the process of nitrous oxide formation in the ocean

Bioengineer by Bioengineer
March 26, 2019
in Chemistry
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

First hydroxylamine measurements in the open ocean conducted by GEOMAR team

Just like oxygen, nitrogen is of fundamental importance for life on Earth. Depending on the forms and compounds in which it occurs, it can promote life, but also limit it. In addition, some nitrogen compounds, such as nitrous oxide, are extremely effective greenhouse gases in the atmosphere. It is therefore important to understand the formation processes of various nitrogen compounds in nature and the factors that influence these processes.

Researchers at the GEOMAR Helmholtz Centre for Ocean Research Kiel have now succeeded for the first time in directly detecting an oceanic process that is fundamental to the nitrogen cycle, the so-called nitrification, by measuring the short-lived compound hydroxylamine. “This detection is otherwise only possible with very complex analyses in special onshore laboratories. With the new method, we were able to carry out the measurements on board,” explains marine chemist Dr. Frederike Korth from GEOMAR. She is the lead author of the study, which has now been published in the international journal Geophysical Research Letters.

Hydroxylamine (NH2OH) is a compound of nitrogen with hydrogen and oxygen that decomposes very quickly if oxygen is present. “This is why there have been no measurements of hydroxylamine from the oceans so far,” explains Prof. Dr. Hermann Bange from GEOMAR, head of the working group and co-author of the new study.

However, the chemists from Kiel, who are specialized in measurements in the ocean, were able to determine dissolved hydroxylamine in water samples from numerous stations during several expeditions of the German research vessels MARIA S. MERIAN and METEOR to the Pacific and Atlantic Oceans. “The compound can be a precursor of nitrous oxide in the nitrogen cycle, but only in the transformation process of nitrification,” explains Korth. A comparison of nitrous oxide and hydroxylamine concentrations in ocean water therefore provides a relatively quick and simple indication of the occurrence of this process.

The method used was already known in theory, but there were still problems with chemical interferences. “For our study, we have now -for the first time- found a reliable way to determine hydroxylamine concentrations in seawater on board,” says Professor Bange.

With this new method, there is now a comparatively simple and quick way to determine where nitrification takes place in the ocean – and ultimately where nitrous oxide can form in the ocean as a result of this process. “Of course, many more measurements are necessary in order to make global statements. But the simpler the analyses are, the more likely it is that we will receive the large amounts of data we need to assemble further pieces in the puzzle of the nitrogen cycle,” emphasises Professor Bange.

###

Media Contact
Jan Steffen
[email protected]

Related Journal Article

http://www.geomar.de/n6436-e
http://dx.doi.org/10.1029/2018GL080466

Tags: BiochemistryEarth ScienceOceanography
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Colorimetric Clues Reveal Hidden Catalysis Secrets

September 17, 2025
blank

Photocatalytic RNA Profiling Enables Multi-Omics Analysis

September 16, 2025

Rare Einstein Cross Unveiled: Astronomers Detect Fifth Image Uncovering Hidden Dark Matter

September 16, 2025

“Shaking Up Electronics: How ‘Wiggling’ Atoms Could Shrink Devices and Boost Efficiency”

September 16, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    155 shares
    Share 62 Tweet 39
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    117 shares
    Share 47 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    67 shares
    Share 27 Tweet 17
  • Scientists Achieve Ambient-Temperature Light-Induced Heterolytic Hydrogen Dissociation

    48 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Single-Cell Rice Atlas Uncovers Cis-Regulatory Evolution

New PfDHFR-TS Inhibitors Discovered from Natural Compounds

Streptomyces vinaceusdrappus: Nano-Selenium Biosynthesis and Benefits

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.