• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, September 21, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Toxic cocktail: Okinawan pit viper genome reveals evolution of snake venom

Bioengineer by Bioengineer
October 4, 2017
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: OIST/Steven Aird

A bite from a pit viper, locally known as habu, can cause permanent disability and even death. Yet, much about its venom remains an enigma. Highly variable in composition, even between littermates, this toxic cocktail keeps changing over generations.

A recent study in Genome Biology and Evolution sheds light on the evolution of snake venoms. For the first time, researchers have sequenced a habu genome, that of the Taiwan habu (Protobothrops mucrosquamatus), and compared it to that of its sister species, the Sakishima habu (Protobothrops elegans).

More than 50 instances of snake bites were recorded in the past year on Okinawa alone, prefectural government figures show. Globally, snake bites cause between 81,000 and 138,000 mortalities per year, according to the World Health Organization. In developing countries and rural areas with high exposure to venomous species and scant medical resources, snake bites can be especially devastating. For such places, creating effective antivenom can be a matter of life or death.

"For many years it was known that snake venoms evolve very rapidly, and the most common explanation for this has been natural selection," said Alexander Mikheyev, senior author on the paper and head of the Ecology and Evolution Unit at the Okinawa Institute of Science and Technology (OIST), "but there are reasons to suspect that this might not be the only evolutionary force at work."

By taking samples of venoms and soft tissues from more than 30 specimens of the Taiwan and Sakishima habus, invasive species on Okinawa, researchers from OIST and the Okinawa Prefectural Institute of Health and Environment were able to map entire sequences of venom genes. Their study shows more than one factor at play in the evolution of this venom.

To understand how the chemical composition of a snake bite evolves, it is crucial to understand its redundancy. Like multiple engines that allow a plane to fly if one of them should fail, venom targets multiple systems, assuring the snake's success. This complex mixture of proteins and small organic molecules attacks crucial prey physiological systems, such as blood pressure or blood coagulation, at several points. Even if one venom component does not prove optimally effective, various others do.

Typically, a habu injects a small amount of venom, a drop the size of a pinhead. Yet, it is more than strong enough to paralyze a rodent. Evolutionary biologists call this surplus power, which prevents prey from injuring or killing a snake, "overkill."

Over time, as snakes reproduce, advantageous traits of venom are passed on to offspring in the process of natural selection. However, the offspring can also inherit other traits — not necessarily beneficial ones. Because the average dose of venom is so high — in some cases killing prey almost instantaneously — it can mask inefficiencies in the venom's chemical makeup. These inefficiencies can be passed down from generation to generation with relatively little effect on the venom's function.

"You can think of venoms evolving over two axes," said Mikheyev. "One of those is pushing them to be more effective, but another axis actually pushes them to be less effective."

It is the role of genetic drift, a concept about which that biologists have long speculated about, that the researchers were able to demonstrate in the habu genome. While numerous studies have shown that natural selection plays a large part in the evolution of snake venom, until recently, the role of drift has only been hypothesized.

"We're only now coming up with analytical methods to look at venoms comprehensively," said Steven Aird, first author on the paper. "There's a tremendous amount we can learn."

The researchers' work opens the door to new avenues of study as well as medical applications.

###

Media Contact

Kaoru Natori
[email protected]
81-989-662-389
@oistedu

http://www.oist.jp/

Original Source

https://www.oist.jp/news-center/news/2017/10/4/toxic-cocktail-okinawan-pit-viper-genome-sheds-light-evolution-snake http://dx.doi.org/10.1093/gbe/evx199

Share12Tweet8Share2ShareShareShare2

Related Posts

Standardized Extract Boosts Immunity in Chemotherapy Mice

September 20, 2025
Enhancing Labeo rohita Growth with Trypsin Nanoparticles

Enhancing Labeo rohita Growth with Trypsin Nanoparticles

September 20, 2025

Comparing ZISO-Driven Carotenoid Production in Dunaliella Species

September 19, 2025

When Metabolism Powers More Than Just Fuel: Exploring Its Expanded Role

September 19, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    156 shares
    Share 62 Tweet 39
  • Physicists Develop Visible Time Crystal for the First Time

    68 shares
    Share 27 Tweet 17
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    49 shares
    Share 20 Tweet 12
  • Scientists Achieve Ambient-Temperature Light-Induced Heterolytic Hydrogen Dissociation

    48 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

TMolNet: Revolutionizing Molecular Property Prediction

NICU Families’ Stories Through Staff Perspectives

CT Scans in Kids: Cancer Risk Insights

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.