• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, November 8, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Towards visible-wavelength passively mode-locked lasers in all-fibre format

Bioengineer by Bioengineer
May 26, 2020
in Chemistry
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: by Jinhai Zou, Chuchu Dong, Hongjian Wang, Tuanjie Du, and Zhengqian Luo

Mode-locked fibre lasers generating ultrashort pulses with the advantages of robustness, compactness and excellent beam quality are of tremendous interest in applications such as laser material processing, medicine, precision measurement, biological photonics, ultrafast spectroscopy, optical communication and scientific research. In recent decades, mode-locked ultrafast fibre lasers operating in the near-infrared and mid-infrared spectral regions have been well developed, but ultrafast laser sources in the visible spectral region (380-760 nm) still heavily rely on Ti:sapphire mode-locked oscillator and optical parametric amplification systems (or frequency doubling of near-infrared ultrafast lasers), suffering from a large footprint and an extremely high cost. Researchers desire an alternative ultrafast visible laser solution that is compact, low cost, user friendly and maintenance free. Passive mode locking in all-fibre format could satisfy all these demands, and therefore, there is strong research motivation to develop passively mode-locked fibre lasers in the visible region.

In a new paper published in Light Science & Application, Zhengqian Luo and colleagues from the Department of Electronic Engineering, Xiamen University, China demonstrated a visible-wavelength passively mode-locked all-fibre laser. By solving the Ginzburg-Landau equation, they found that the dissipative soliton resonance mechanism can be applied to establish stable visible-light mode-locked pulses in a large normal-dispersion fibre cavity. Based on the numerical results, they further experimentally realized an all-fibre visible-wavelength passively mode-locked laser. The laser generates picosecond pulses of light at 635 nm and represents an essential step towards miniaturized ultrafast fibre lasers in the visible light range. The reported work lays the foundations for photonic devices for use in applications such as visible light communications, laser material processing, femtosecond laser-frequency comb, and scientific research.

The 635 nm mode-locked laser with an all-fibre figure-eight cavity uses a Pr/Yb codoped ZBLAN fibre as the visible gain medium and a nonlinear amplifying loop mirror as the mode-locking element. These scientists summarize the innovation research work as follows:

“We numerically and experimentally demonstrated a 635 nm all-fibre passively mode-locked laser for the first time. First, by solving the Ginzburg-Landau equation using the standard split-step Fourier method, the formation and evolution of 635 nm mode-locked pulses were predicted and analysed. Then, based on our numerical results, we further experimentally demonstrate the stable generation of 635 nm passively mode-locked pulses with a tunable picosecond duration, a radio-frequency signal-to-noise ratio of 67 dB and a narrow spectral bandwidth of 1 nm) and modulated optical spectrum.”

“The presented technique and method can be used for the generation of other visible-wavelength ultrafast fibre lasers. It is an essential step towards miniaturized ultrafast fibre lasers in the visible light range. This breakthrough will lay the foundations for visible ultrafast fibre lasers for use in applications such as optical communications, biomedicine, material processing, microimaging, femtosecond laser-frequency comb, ultraviolet ultrafast generation directly by frequency doubling and scientific research.” the scientists forecast.

###

Media Contact
Zhengqian Luo
[email protected]

Related Journal Article

http://dx.doi.org/10.1038/s41377-020-0305-0

Tags: Chemistry/Physics/Materials SciencesOptics
Share12Tweet8Share2ShareShareShare2

Related Posts

Increasing Nitrogen and Rainfall May Dramatically Boost Greenhouse Gas Emissions from the World’s Largest Grasslands

Increasing Nitrogen and Rainfall May Dramatically Boost Greenhouse Gas Emissions from the World’s Largest Grasslands

November 7, 2025
blank

OSU Develops Revolutionary New Material Advancing Medical Imaging Technology

November 7, 2025

Heat-Resistant Microbes Uncover Molecular Secrets Behind Nature’s Ultimate Recycling System

November 7, 2025

Innovative MOF Membrane Electrolyzer Converts Air and Flue Gas CO2 into Pure Formic Acid, Advancing Carbon Neutrality

November 7, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    314 shares
    Share 126 Tweet 79
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    206 shares
    Share 82 Tweet 52
  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1302 shares
    Share 520 Tweet 325
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    139 shares
    Share 56 Tweet 35

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Diverse Approaches to Measuring Multimorbidity in Hospitalized Seniors

Light Therapy Enhances Recovery from Brain Injury

Coaxial FeS/MoS2@C Composites Enhance Sodium Storage

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.