• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, October 23, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Towards largest-possible separation between quantum and classical query complexities

Bioengineer by Bioengineer
April 28, 2017
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: ©Science China Press

Correlation functions are often employed to quantify the relationships among interdependent variables or sets of data. A few years ago, Aaronson and Ambainis proposed a property-testing problem called Forrelation for studying the query complexity of quantum devices. Now scientists realized an experimental study of Forrelation in a 3-qubit nuclear magnetic resonance quantum information processor.

The related research entitled "Experimental study of Forrelation in nuclear spins" was published on Science Bulletin of volume 62 and pages 497, 2017. Four scholars from Tsinghua University, Li Hang, Gao Xun, Xin Tao and Long Guilu collaborated with a scholar from Southern University of Science and Technology, Yung Man-Hong, completed the research. Among which, Professor Long Guilu and Yung Man-Hong are the corresponding authors. The above 5 scholars solved 2-fold and 3-fold Forrelation problems in nuclear spins and controlled the spin fluctuation to within a threshold value using a set of optimized GRAPE pulse sequences.

It is widely-believed that quantum computers have an advantage over classical computers in many computational problems. Particularly, in the black-box model, many quantum algorithms can exhibit quantum speedups. This raises a question: within the black-box model, just how large a quantum speedup is possible? Specifically, in query complexity, can we find the largest separation between classical and quantum query complexities?

Two years ago, Aaronson and Ambainis introduced a new property-testing problem called Forrelation, where one needs to decide whether one Boolean function is highly correlated with the Fourier transform of another Boolean function. And they showed that it gave the largest quantum black-box speedup yet known.

Professor Long Guilu and his collaborators designed a quantum circuit for implementing multi-fold Forrelations. They realized the 2-fold and 3-fold case of Forrelations on a nuclear magnetic resonance spectrometer by measuring the value of Forrelation to check it's in the case of larger than 3/5 or the absolute value of it is less than 1/100. This is the first experimental realization of solving the Forrelation problem reported in the literature. Their results are shown in figure 1.

Professor Long Guilu, who directed the experiment and gave Forrelation the Chinese translation "????", states: "One of the difficulties is achieving a high fidelity of the final states, since the value of Forrelation is highly sensitive to the measurement. To control the error within a threshold value, we utilized an optimized gradient ascent pulse engineering technique instead of a composite pulse sequence of hard pulses and J-coupling evolutions."

Professor Yung Man-Hong points out the future development of their work: "All their quantum algorithms are implemented on a three-qubit quantum information processor, which may not present the power of quantum computation over classical computation due to the present experimental techniques. However, this prototype experiment indicates that we may gain quantum supremacy in relatively-simple quantum devices in the near future."

###

This research was funded by the National Natural Science Foundation of China (No. 11175094, 91221205 and 11405093), and the National Basic Research Program of China (No. 2015CB921002).

See the article: H. Li, X. Gao, T. Xin, MH Yung, G. Long, "Experimental Study of Forrelation in Nuclear Spins" Sci. Bull. (2017) 62(7): 497-502. doi: 10.1016/j.scib.2017.03.006

This article was published online, in the Science Bulletin, by Science China Press and Elsevier.

Media Contact

Long Guilu
[email protected]

http://zh.scichina.com/english/

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Global Coral Phylogeny Unveils Ancient Resilience, Risks

October 23, 2025
blank

Golden Platform Unveils the Hidden Forces of Nature’s Invisible Glue

October 23, 2025

New Study Demonstrates AI’s Potential to Deliver Safe Treatment Guidance for Opioid Use Disorder During Pregnancy

October 23, 2025

Neural Signatures of Turn-Freezing in Parkinson’s Disease

October 23, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1275 shares
    Share 509 Tweet 318
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    307 shares
    Share 123 Tweet 77
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    158 shares
    Share 63 Tweet 40
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    132 shares
    Share 53 Tweet 33

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Global Coral Phylogeny Unveils Ancient Resilience, Risks

Golden Platform Unveils the Hidden Forces of Nature’s Invisible Glue

New Study Demonstrates AI’s Potential to Deliver Safe Treatment Guidance for Opioid Use Disorder During Pregnancy

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 66 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.