• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, September 13, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home Headlines

Towards better treatment of cystitis

Bioengineer.org by Bioengineer.org
January 21, 2018
in Headlines, Health, Science News
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Every year, millions of people are treated for cystitis, but despite its prevalence, the disease is still a scientific mystery. Now a research team from University of Southern Denmark has succeeded in identifying how the bacteria responsible for the disease cause the disease to develop. This is a cause for optimism that more effective treatment methods can be developed.

You feel the urge to urinate every two minutes, but you can only manage to squeeze out a few drops, and it stings terribly. Almost every woman has experienced cystitis, and some even experience it as a recurring annoyance.

In cases of a bacterial infection, the doctor may prescribe antibiotics. But these bacteria have a special ability to survive this treatment and cause a new infection. Now a Danish research team is reporting that they have made a discovery that potentially could lead to a new and radically different method of treatment.

Systematic monitoring of the bladder wall

The research team has developed a model that enables systematic observation and analysis of bacteria from each step in the bacteria's invasion of the bladder wall.

"Now we know important details on how the bacterium enters the phases that poses a threat. And we know how we can potentially prevent the bacteria from reaching that stage" explains head of research Jacob Møller-Jensen from the Department of Biochemistry and Molecular Biology at the University of Southern Denmark.

The research team also consists of Postdoc Surabhi Khandige, Department of Biochemistry and Molecular Biology, as well as participants from the Department of Clinical Microbiology at Odense University Hospital, led by senior researcher Thomas Emil Andersen, Department of Clinical Research.

The bacteria attach themselves to the inside of the bladder

Cystitis is usually due to special E. coli bacteria, which are able to invade cells in the urinary tract. The bacteria attach themselves to the inside of the bladder and grow. In response, the bladder rejects the outer layer of cells and thereby flushes many of the bacteria out in the urine. This produces the cloudy urine that is typical of a urinary tract infection.

However, some E. coli bacteria are cunning enough to avoid being flushed out. In a fascinating way, they alter their form and become extremely long (a process known as filamentation). This improves their ability to attach themselves to the bladder wall and thus avoid being flushed out. This in turn sets the stage for the bacteria to spread further and to take over and destroy one bladder cell after another. Finally, the bacteria reach the bottom layer of bladder cells, which they penetrate and then stop dividing. At this stage, neither antibiotics nor the body's immune system can reach the bacteria.

Become long and thin

"Scientists have long known that this bacterium is capable of some very specific tricks, including changing shape during the infection. But until now it has been difficult to discover how the bacterium manages this", explains Surabhi Khandige.

"The bacteria's ability to form long filaments is crucial to their ability to spread and thus for cystitis to develop". In order to study the bacteria's behaviour, the researchers constructed an artificial bladder model. The principle of the model is that the inside of a small chamber is lined with bladder cells, and when they have established themselves, human urine is sent into the chamber, thereby producing an artificial bladder. Then the E. coli bacteria are sent in and their activity is monitored.

"We studied the course of the infection through a microscope and we collected and studied bacteria from the various stages of the infection process. This enabled us to identify the mechanism that causes the bacteria to become filamentous. This is the first time such a detailed insight has been achieved, and it provides obvious opportunities to control this bacterium's activities and prevent the initial stage of the infection", says Jacob Møller-Jensen.

Mice did not develop cystitis

In the laboratory, the researchers tried to deactivate the mechanism that usually makes the bacteria long and thin. The ability of the bacteria to cause cystitis was then tested in mouse studies.

"Not only did we see that the bacteria were unable to cause a robust infection. We also saw that the bacterium's ability to penetrate into the deeper layers of the bladder wall declined sharply. In other words, when we deactivate the mechanism, we undermine the bacterium" says Thomas Emil Andersen, and continues:

"This offers hope that we can devise new treatment strategies to prevent problematic and recurrent urinary tract infections".

Salmonella behaves in the same way

E. coli is not the only bacterium that uses filamentation as a survival strategy. The same phenomenon can be observed, for example, in Salmonella and Klebsiella, which today are resistant to many antibiotics.

"It will be interesting to examine whether these bacteria can be controlled in the same way", says Thomas Emil Andersen.

###

The researchers have published their findings in the journal mBio and at the conference Clinical and Scientific Advances in Urinary Tract Infections Conference, 26-28 August in Columbus, Ohio.

Media Contact

Birgitte Svennevig
[email protected]
@@NATsdu

http://www.sdu.dk/en/om_sdu/fakulteterne/naturvide

Share12Tweet8Share2ShareShareShare2

Related Posts

Curcuma longa Nanocomposites Combat Drug-Resistant Pathogens

Curcuma longa Nanocomposites Combat Drug-Resistant Pathogens

September 13, 2025

Preoperative BMI Influences Outcomes in Infective Endocarditis

September 13, 2025

Advancing Liver Transplantation for Cancer with Genomics

September 13, 2025

Exploring Water Absorption in Footballs: Leather vs. Synthetic

September 13, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    153 shares
    Share 61 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    65 shares
    Share 26 Tweet 16
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Curcuma longa Nanocomposites Combat Drug-Resistant Pathogens

Preoperative BMI Influences Outcomes in Infective Endocarditis

Advancing Liver Transplantation for Cancer with Genomics

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.