• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, October 17, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Tortoise electrons trying to catch up with hare photons give graphene its conductivity

Bioengineer by Bioengineer
December 19, 2016
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

How electrons interact with other electrons at quantum scale in graphene affects how quickly they travel in the material, leading to its high conductivity. Now, Natália Menezes and Cristiane Morais Smith from the Centre for Extreme Matter and Emergent Phenomena at Utrecht University, the Netherlands, and a Brazilian colleague, Van Sergio Alves, have developed a model attributing the greater conductivity in graphene to the accelerating effect of electrons interacting with photons under a weak magnetic field. Their findings have been published in EPJB.

Due to the honeycomb-lattice structure of the one-layer-thick carbon-atom material, the energy of the electrons varies in keeping with their speed. If we had to picture the spectrum of electrons' speed, it would resemble a cone. The slope of the cone is the electron speed, which is three hundred times smaller than the speed of light.

In this study, physicists have devised a way of testing what happens when electrons interact with each other. To do so, they used pseudo-quantum electrodynamics (PQED), a theory that effective describes the interaction between electrons mediated by photons existing in different space-time dimensions. While the electrons are limited to propagating on a plane, the photons are free to move in 3D space.

As part of the study, the authors also took into account a weak magnetic field perpendicular to the graphene plane. They then used two different methods to examine its trending effect on the way the energy of electrons is spread around the vertex of the cone. The surprising finding is that electrons have a tendency to increase their velocity towards that of the photons, which travel at the speed of light. And the weak magnetic field does not change this trend. Therefore, the electrons' collective behaviour, which is linked to conductivity, remains the same as in the absence of a weak field.

###

Reference:

N. Menezes, V. S. Alves, C. Morais Smith (2016), The influence of a weak magnetic field in the Renormalization-Group functions of (2+1)-dimensional Dirac systems, Eur. Phys. J. B 89:271, DOI: 10.1140/epjb/e2016-70606-4

Media Contact

Sabine Lehr
[email protected]
49-622-148-78336
@SpringerNature

http://www.springer.com

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

Microsampling Advances in Mass Spectrometry Proteomics

October 17, 2025

Building Cultural Empathy in Saudi Nursing Education

October 17, 2025

Over 99% Detection via Dual Nanowire Waveguide

October 17, 2025

Advancing Rare Disease Research: Insights and Future Directions

October 17, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1254 shares
    Share 501 Tweet 313
  • New Study Reveals the Science Behind Exercise and Weight Loss

    106 shares
    Share 42 Tweet 27
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    102 shares
    Share 41 Tweet 26
  • Revolutionizing Optimization: Deep Learning for Complex Systems

    93 shares
    Share 37 Tweet 23

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Microsampling Advances in Mass Spectrometry Proteomics

Building Cultural Empathy in Saudi Nursing Education

Over 99% Detection via Dual Nanowire Waveguide

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 65 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.