• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, September 19, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Topological quantum simulation unlocks new potential in quantum computers

by
September 6, 2025
in Chemistry
Reading Time: 2 mins read
0
Topological quantum simulation
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Researchers from the National University of Singapore (NUS) have successfully simulated higher-order topological (HOT) lattices with unprecedented accuracy using digital quantum computers. These complex lattice structures can help us understand advanced quantum materials with robust quantum states that are highly sought after in various technological applications. 

Researchers from the National University of Singapore (NUS) have successfully simulated higher-order topological (HOT) lattices with unprecedented accuracy using digital quantum computers. These complex lattice structures can help us understand advanced quantum materials with robust quantum states that are highly sought after in various technological applications. 

The study of topological states of matter and their HOT counterparts has attracted considerable attention among physicists and engineers. This fervent interest stems from the discovery of topological insulators – materials that conduct electricity only on the surface or edges – while their interiors remain insulating. Due to the unique mathematical properties of topology, the electrons flowing along the edges are not hampered by any defects or deformations present in the material. Hence, devices made from such topological materials hold great potential for more robust transport or signal transmission technology.

Using many-body quantum interactions, a team of researchers led by Assistant Professor Lee Ching Hua from the Department of Physics under the NUS Faculty of Science has developed a scalable approach to encode large, high-dimensional HOT lattices representative of actual topological materials into the simple spin chains that exist in current-day digital quantum computers. Their approach leverages the exponential amounts of information that can be stored using quantum computer qubits while minimising quantum computing resource requirements in a noise-resistant manner. This breakthrough opens up a new direction in the simulation of advanced quantum materials using digital quantum computers, thereby unlocking new potential in topological material engineering.

The findings from this research have been published in the journal Nature Communications.

Asst Prof Lee said, “Existing breakthrough studies in quantum advantage are limited to highly-specific tailored problems. Finding new applications for which quantum computers provide unique advantages is the central motivation of our work.”

“Our approach allows us to explore the intricate signatures of topological materials on quantum computers with a level of precision that was previously unattainable, even for hypothetical materials existing in four dimensions” added Asst Prof Lee.

Despite the limitations of current noisy intermediate-scale quantum (NISQ) devices, the team is able to measure topological state dynamics and protected mid-gap spectra of higher-order topological lattices with unprecedented accuracy thanks to advanced in-house developed error mitigation techniques. This breakthrough demonstrates the potential of current quantum technology to explore new frontiers in material engineering. The ability to simulate high-dimensional HOT lattices opens new research directions in quantum materials and topological states, suggesting a potential route to achieving true quantum advantage in the future.

 



Journal

Nature Communications

DOI

10.1038/s41467-024-49648-5

Article Title

Realization of higher-order topological lattices on a quantum computer

Article Publication Date

10-Jul-2024

Share12Tweet8Share2ShareShareShare2

Related Posts

Complete Synthesis of Hemiketal Tetrodotoxin Achieved

Complete Synthesis of Hemiketal Tetrodotoxin Achieved

September 19, 2025
Early Universe Galaxies Unveil Hidden Dark Matter Maps

Early Universe Galaxies Unveil Hidden Dark Matter Maps

September 18, 2025

Chicago Quantum Exchange-Led Coalition Reaches Final Stage in NSF Engine Competition

September 18, 2025

“First-ever observation of quantum squeezing in a nanoscale particle”

September 18, 2025

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    155 shares
    Share 62 Tweet 39
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    117 shares
    Share 47 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    67 shares
    Share 27 Tweet 17
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Advances in Asthma Therapeutics Unveiled

Persistent Cough Reveals Mysterious Endobronchial Mass

Unlocking Lignocellulose Breakdown: Microbial Enzyme Insights

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.