• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, September 10, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Topological protection of entangled two-photon light in photonic topological insulators

Bioengineer by Bioengineer
March 30, 2021
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: MBI/HU

In a joint effort, researchers from the Humboldt-Universität (Berlin), the Max Born Institute (Berlin) and the University of Central Florida (USA), have revealed the necessary conditions for the robust transport of entangled states of two-photon light in photonic topological insulators, paving the way the towards noise-resistant transport of quantum information. The results have appeared in Nature Communications.

Originally discovered in condensed matter systems, topological insulators are two-dimensional materials that support scattering-free (uni-directional) transport along their edges, even in the presence of defects and disorder. In essence, topological insulators are finite lattice systems where, given a suitable termination of the underlying infinite lattice, edge states are formed that lie in a well-defined energy gap associated with the bulk states, i.e. these edge states are energetically separated from the bulk states, see Fig 1.

Importantly, single-particle edge states in such systems are topologically protected from scattering: they cannot scatter into the bulk due to their energy lying in the gap, and they cannot scatter backwards because backward propagating edge states are either absent or not coupled to the forward propagating edge states.

The feasibility of engineering complex Hamiltonians using integrated photonic lattices, combined with the availability of entangled photons, raises the intriguing possibility of employing topologically protected entangled states in optical quantum computing and information processing (Science 362, 568, (2018), Optica 6, 955 (2019)).

Achieving this goal, however, is highly nontrivial as topological protection does not straightforwardly extend to multi-particle (back-)scattering. At first, this fact appears to be counterintuitive because, individually, each particle is protected by topology whilst, jointly, entangled (correlated) particles become highly susceptible to perturbations of the ideal lattice. The underlying physical principle behind this apparent ‘discrepancy’ is that, quantum-mechanically, identical particles are described by states that satisfy an exchange symmetry principle.

In their work, the researchers make several fundamental advances towards understanding and controlling topological protection in the context of multi-particle states:

    – First, they identify physical mechanisms which induce a vulnerability of entangled states in topological photonic lattices and present clear guidelines for maximizing entanglement without sacrificing topological protection.

    -Second, they stablish and demonstrate a threshold-like behavior of entanglement vulnerability and identify conditions for robust protection of highly entangled two-photon states.

To be precise, they explore the impact of disorder onto a range of two-photon states that extend from the fully correlated to the fully anti-correlated limits, thereby also covering a completely separable state. For their analysis, they consider two topological lattices, one periodic and one aperiodic. In the periodic case they consider the Haldane model, and for the aperiodic case a square lattice, whose single-particle dynamics corresponds to the quantum Hall effect, is studied.

The results offer a clear roadmap for generating robust wave packets tailored to the particular disorder at hand. Specifically, they establish limits on the stability of entangled states up to relatively high degrees of entanglement that offer practical guidelines for generating useful entangled states in topological photonic systems. Further, these findings demonstrate that in order to maximize entanglement without sacrificing topological protection, the joint spectral correlation map of two-photon states must fit inside a well-defined topological window of protection, Fig. (2).

###

Media Contact
Prof. Dr. Kurt Busch
[email protected]

Related Journal Article

http://dx.doi.org/10.1038/s41467-021-22264-3

Tags: Chemistry/Physics/Materials SciencesOptics
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Most Precise Confirmation of Hawking’s Area Theorem from Clearest Black Hole Collision Signal Yet

September 10, 2025
Gravitational Waves Confirm Hawking and Kerr Black Hole Theories

Gravitational Waves Confirm Hawking and Kerr Black Hole Theories

September 10, 2025

A Decade Later: Gravitational Waves Confirm Stephen Hawking’s Black Hole Area Theorem

September 10, 2025

When Magnetic Moments Clash: How Quantum Mechanics Unlocks the Secrets of Iron Catalysts

September 10, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    151 shares
    Share 60 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    59 shares
    Share 24 Tweet 15
  • First Confirmed Human Mpox Clade Ib Case China

    56 shares
    Share 22 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Impact of Race, Ethnicity, and Insurance on Survival Rates After Pediatric Cardiac Arrest

Most Precise Confirmation of Hawking’s Area Theorem from Clearest Black Hole Collision Signal Yet

Faster Diagnostic Scans Could Revolutionize Prostate Cancer Detection for Millions

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.