• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, September 18, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Topological phase protection reams to sub-symmetry

Bioengineer by Bioengineer
June 8, 2023
in Chemistry
Reading Time: 4 mins read
0
Schematic illustration classifying perturbations in the symmetry-protected topological phase (SPT phase).
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

An international team led by researchers at Nankai University in China and at University of Zagreb in Croatia, along with team at the Institut national de la recherche scientifique (INRS) in Canada, led by Roberto Morandotti has made an important breakthrough in the study of topological phases. Their findings were recently published in Nature Physics – a journal published by Nature Publishing Group.

Schematic illustration classifying perturbations in the symmetry-protected topological phase (SPT phase).

Credit: Domenico Bongiovanni and co-authors

An international team led by researchers at Nankai University in China and at University of Zagreb in Croatia, along with team at the Institut national de la recherche scientifique (INRS) in Canada, led by Roberto Morandotti has made an important breakthrough in the study of topological phases. Their findings were recently published in Nature Physics – a journal published by Nature Publishing Group.

In the last decade, topological photonics has attracted increasing attention due to the unique prospects to achieve light manipulation with high performance in terms of robustness and stability. Discoveries in topological photonics have opened the way to the development of a novel generation of photonic devices, such as topological lasers and cavities, featuring topologically protected states that are immune to disorders and defects. The concept of topology in physics is inherited from mathematics, where topology is employed to study geometric properties of an object concerning quantities that are preserved under continuous deformation. Two objects are topologically identical when the surface of one can be continuously deformed into that of the other one and vice versa, e.g., a coffee cup and a torus are equivalent from a topology viewpoint. In physics, the concept of topology is employed to describe the energy band characteristics, leading to prediction of novel topological states of matter and various topological materials. Different topological phases (trivial and nontrivial) are distinguished by appropriately introducing quantized topological invariants, which enable establishing a link between the bulk properties and the emergence of the feature at the boundary of these materials, known as the “bulk-boundary correspondence”. In this regard, the most distinctive feature of a nontrivial topology is the existence of robust topological boundary states protected by specific spatial and/or intrinsic symmetries.

In general, in systems of symmetry-protected topological phase (SPT phase), it is believed that the close relationship between topological boundary states, topological invariants, and one or more overall symmetries is indispensable for maintaining topological protection against perturbations. As consequence, both topological invariants and topological boundary states are irretrievably affected by any distortion that breaks the underlying symmetry. In this work, the international research team  has challenged this traditional common belief, and thus broaden the understanding of SPT boundary states. They found that even if the system no longer has quantized topological invariants and some kinds of global symmetry, the topological boundary states can still exist in the corresponding subspaces, protected by the so-called “sub-symmetries”.

“Our discovery challenges the common thinking of the symmetry-protected topological phase in topology and renews the correspondence of topological invariant and boundary states”, said Domenico Bongiovanni one of the main investigators, Postdoctoral researcher at INRS-EMT. “Our idea has the potential to explain the topological origin of many unconventional states and can find application in different platforms and physical systems.”

The researchers, by introducing and exploring the concept of sub-symmetry, found that global symmetry in the traditional sense is not completely necessary for the protection of topological boundary states. In this regard, topological boundary states are preserved as long as the symmetries of specific subspaces are satisfied, even when the overall topological invariants no longer exist. The research team cleverly designed and fabricated photonic lattice structures using a cw-laser writing technique to meet the conditions of different subspace symmetries. The experiments demonstrated a proof of concept with two most typical topological lattices: one-dimensional SSH and two-dimensional Kagome lattices. In addition, the team innovatively introduced the concept of long-range coupling symmetry into the Kagome lattice model, which resolves the current controversies about the existence and topological protection of higher-order topological states in the Kagome lattice.

This study not only challenges the traditional comprehension of topological states protected by symmetry but also provides new ideas for the research and application of topological states in different physical backgrounds. This impact of this work is expected to further promote the development of topological photonics and its cutting-edge interdisciplinary fields, as well as the research and development of a new generation of topological photonic devices based on sub-symmetry-protected boundary states.

About this study

The article “Sub-symmetry protected topological states” by Ziteng Wang, Xiangdong Wang, Zhichan Hu, Domenico Bongiovanni, Dario Jukić, Liqin Tang, Daohong Song, Roberto Morandotti, Zhigang Chen, Hrvoje Buljan has been published in the journal Nature Physics. The study received financial support from the National Key Research and Development Program and the National Natural Science Foundation of China, the QuantiXLie Center of Excellence co-financed by the Croatian Government and European Union, and the Natural Sciences and Engineering Research Council of Canada (NSERC) and the Canada Research Chairs Program (CRC).

 

 

 

 

 



Journal

Nature Physics

DOI

10.1038/s41567-023-02011-9

Method of Research

News article

Subject of Research

Not applicable

Article Title

Sub-symmetry-protected topological states

Article Publication Date

17-Apr-2023

Share12Tweet8Share2ShareShareShare2

Related Posts

UVA Secures $16M DOE Grant to Establish Cutting-Edge Predictive Science Simulation Center

UVA Secures $16M DOE Grant to Establish Cutting-Edge Predictive Science Simulation Center

September 17, 2025
A Motor-Sparing Local Anesthetic: Is It Within Reach?

A Motor-Sparing Local Anesthetic: Is It Within Reach?

September 17, 2025

Protein Chemist Secures NIH Grant to Explore Mechanisms of Inflammation

September 17, 2025

Engineering the Future: How 3D Printing is Revolutionizing Bioactive Implant Design and Materials

September 17, 2025

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    155 shares
    Share 62 Tweet 39
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    117 shares
    Share 47 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    67 shares
    Share 27 Tweet 17
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    48 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

New Study Confronts the Cardiovascular Impact of COVID-19 Head-On

Groundbreaking Report Reveals Strategies to Address COVID-19’s Lasting Impact on Cardiovascular Health

QUT Researchers Develop Innovative Material to Convert Waste Heat into Sustainable Energy

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.