• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, November 2, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Too-tight membrane keeps cells from splitting

Bioengineer by Bioengineer
February 28, 2019
in Biology
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Scientists uncover how one protein keeps conditions ‘just right’ so that cells can easily divide into two identical daughter cells

Credit: OIST

Cells divide to grow new tissues or patch up damaged ones, but when cell division goes wrong, it can cause more harm than good. To avoid dire consequences, namely disease and unwanted cell death, cells employ a suite of failsafes to ensure they split evenly, every time. Now, scientists have identified a previously unknown mechanism by which cells accomplish this impressive feat.

Usually, the genetic material within a cell assembles in loose, lengthy strands–picture an unwound spool of thread. During cell division, those strands coil themselves into tightly bound chromosomes and align at the cell’s equator. To make room for this chorus line formation, the squishy cell rounds up into a perfect sphere. Scientists have long known that if a cell cannot round at this stage, it cannot divide. The new research, published February 28, 2019 in Nature Communications, presents a novel idea: if a cell rounds with too much force, division becomes equally impossible.

“There are many reported cases of cells not having enough force to round up, but this is the first case reporting excess force,” said Prof. Keiko Kono, co-senior author of the study and principal investigator of the OIST Membranology Unit. The researchers discovered an alternate scenario, wherein a critical failsafe is removed, the cell generates too much force and division simply stalls. Though chromosomes still organize along the cell equator, a stage known as the “spindle assembly checkpoint,” division cannot proceed past this point.

“The chromosomes are just beautifully aligned,” said Kono, “but the checkpoint cannot be released.”

Kono conducted the study with co-senior author Prof. Makoto Nakanishi of the University of Tokyo, as well as additional collaborators from the University of Tokyo, Yamaguchi University, Nagoya City University, Kyoto University, and the Japanese Foundation for Cancer Research. At OIST, the Kono Unit pursues related research, investigating how cells change shape in response to different stimuli, including damage to their outer membranes. The research advances our understanding of how cells work and could someday inform how we treat many medical ailments, from hearing loss to cancer.

Molecular Brake Helps Maintain Balance

In a petri dish, cells tend to lie flat like fresh baked cookies stuck to a baking tray. During division, they puff up on the dish, forming into tiny balls. It’s been shown that a protein called cyclin-dependent kinase 1, or Cdk1, helps drive this rounding action. Cdk1 triggers a chain reaction which leads to accumulation of stringy filaments, called F-actin, at the cell surface. F-actin works with a proteinous partner–myosin–to pull the surface taut and cause the cell to round.

“But there’s a kind of puzzle here,” said Kono. At the onset of cell division, tension at the cell surface steadily increases. But once chromosomes align at the equator, the tension plateaus and remains nearly constant until the cell finally splits. “[The established theory] explains this linear increase, but it doesn’t explain why the force is stabilized–our work explained this.”

To solve this mystery, the researchers created mutant cells in which the chain reaction set off by Cdk1 was disrupted. Normally, Cdk1 triggers a series of events that cues the cell to build actin filaments. Acting like a key in the ignition, a protein downstream of Cdk1 activates the F-actin assembly line, stringing together molecular links to create each individual filament. The scientists suspected that, if one protein jumpstarts this process, another must act as a brake to slow it down.

They found that, remarkably, Cdk1 steps in to play this role. After cueing the cell to construct actin filaments, Cdk1 modifies the assembly line itself, halting construction before too much actin accumulates. In mutated cells, in which Cdk1 was prevented from putting on the brakes, actin piled up at the cell surface and caused tension to build uncontrollably. Unless the brake was reinstalled, the mutant cells could not divide.

‘Goldilocks Zone’ for Cell Division

The results suggest that excess tension at the cell surface disrupts division, but further research is needed to know exactly why. In the future, Kono plans to investigate how forces acting at the cell membrane affect the timing of division, especially on either side of the spindle assembly checkpoint. Following the checkpoint, the perfect row of chromosomes gets torn in two, granting an equal amount of genetic material to each resulting daughter cell.

In preparation for this critical moment, the cell needs everything to go just right.

“If the chromosomes cannot be aligned and distributed well, it will immediately induce diseases,” said Kono. For chromosomes to be divvied up evenly, the cell must round up just enough, but not too much. “It’s intuitive to imagine if you have less force, you can’t round up. But if you round up too much, this is also harmful; this is a new idea.”

###

Media Contact
Kaoru Natori
[email protected]

Original Source

https://www.oist.jp/news-center/press-releases/key-protein-keeps-cells-splitting-smoothly

Related Journal Article

http://dx.doi.org/10.1038/s41467-019-08957-w

Tags: BiologyCell Biology
Share15Tweet8Share2ShareShareShare2

Related Posts

Phylogenomics Merges Mameliella and Maliponia into Antarctobacter

Phylogenomics Merges Mameliella and Maliponia into Antarctobacter

November 2, 2025
Overcoming Batch Effects in Single-Cell RNA-seq Datasets

Overcoming Batch Effects in Single-Cell RNA-seq Datasets

November 2, 2025

Unraveling CpG Island Methylation Through Read Bias Analysis

November 2, 2025

Unraveling Resistance Genes in Photorhabdus Bacteria

November 2, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1296 shares
    Share 518 Tweet 324
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    312 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    203 shares
    Share 81 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    137 shares
    Share 55 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

New Guidelines for Managing Thrombosis in Burn Patients

Compact DAC Leveraging Optical Kerr Effect Innovations

Assessing Nursing Care Plan Writing: Validity Study

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.