• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, July 23, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

To understand ecology, follow the connections

Bioengineer by Bioengineer
July 6, 2021
in Biology
Reading Time: 2 mins read
0
ADVERTISEMENT
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

New research from UMass Amherst suggests that demography is the key to managing habitat loss and fragmentation

IMAGE

Credit: Lucilleb/iStock/Getty Images Plus

AMHERST, Mass. – City sprawl and road development is increasingly fragmenting the habitats that many plant and animal species need to survive. Ecologists have long known than sustainable development requires attention to ecological connectivity – the ability to keep plant and wildlife populations intact and healthy, typically by preserving large tracts of land or creating habitat corridors for animals. New research from the University of Massachusetts Amherst argues that it’s not enough for ecological modelling to focus on the landscape. If we want the best-possible ecological management, we should consider when and where individuals are located.

“Everybody needs a place to live,” says Joseph Drake, a graduate student in the department of environmental conservation and the organismic and evolutionary biology program at UMass, and the lead author of the research that appeared recently in Ecography. “Humans build roads, but animals and plants have pathways. Movement along the pathways are essential to the continued persistence of plant and animal populations.” This is where connectivity comes in, and there are two traditional ways of modelling it. One, the structural approach, focuses on where suitable habitats are and whether or not these habitats are contiguous, connected via corridors, or broken up and widespread. The other definition, functional connectivity, considers how species respond in relation to the habitats they move through.

But, says Drake, it’s not enough to focus on either the structural or functional aspects of connectivity. Instead, a third aspect – demography – needs to be combined with the other two. “If we wish to understand how human activities influence plants and wildlife,” says Drake, “then we need to know where the animals and plants actually are, where they want to be and how they move.” Drake and his co-authors advocate for a “demographically weighted approach,” which substantially improves the ability of ecological models to mirror observed reality. Indeed, the authors show that ignoring demography can markedly reduce the performance of ecological models, which has real-world implications for species’ chances of survival.

Furthermore, the weighted approach is better not only at understanding populations of plants and animals as they are now, but in the future, as well. As plants and animals continue to adapt to climate change by moving across the landscape, understanding how species’ dispersal affects their existence will take on growing importance.

###

Contacts: Joseph Drake, [email protected]
Daegan Miller, [email protected]

Media Contact
Daegan Miller
[email protected]

Original Source

https://www.umass.edu/news/article/understand-ecology-follow-connections

Related Journal Article

http://dx.doi.org/10.1111/ecog.05552

Tags: BiodiversityBiologyEcology/EnvironmentPopulation Biology
Share13Tweet8Share2ShareShareShare2

Related Posts

Machine Learning Uncovers Sorghum’s Complex Mold Resistance

July 20, 2025
blank

Archaeal Ribosome Shows Unique Active Site, Hibernation Factor

July 17, 2025

Mobile Gene Regulator Balances Arabidopsis Shoot-Root Growth

July 16, 2025

Mobile Transcription Factor Drives Nitrogen Deficiency Response

July 16, 2025
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    59 shares
    Share 24 Tweet 15
  • New Organic Photoredox Catalysis System Boosts Efficiency, Drawing Inspiration from Photosynthesis

    54 shares
    Share 22 Tweet 14
  • IIT Researchers Unveil Flying Humanoid Robot: A Breakthrough in Robotics

    53 shares
    Share 21 Tweet 13
  • AI Achieves Breakthrough in Drug Discovery by Tackling the True Complexity of Aging

    70 shares
    Share 28 Tweet 18

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Additive Manufacturing of Monolithic Gyroidal Solid Oxide Cells

Machine Learning Uncovers Sorghum’s Complex Mold Resistance

Pathology Multiplexing Revolutionizes Disease Mapping

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.