• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, September 17, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

To the bone: 3D mapping mineral patterns inside the shark vertebral centrum

Bioengineer by Bioengineer
February 2, 2022
in Biology
Reading Time: 3 mins read
0
X-ray excited scanning fluorescence map of Ca, Zn, and P intensities.
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Sharks, found in deep and shallow waters throughout the oceans, are some of the oldest living creatures on planet Earth. Shark skeletons, made of rubbery tissue called cartilage, have fascinated scientists for eons. Sharks swim at high speeds under deep water, and their skeletons experience high pressure and strain. These swimming-induced loads are borne by the centrum—mineralized bony tissue present in the shark’s vertebrae. However, from a functional standpoint, it is not fully clear how the complex 3D mineral structures of the shark centrum support and distribute loads within it.

X-ray excited scanning fluorescence map of Ca, Zn, and P intensities.

Credit: Stock et al., doi 10.1117/1.JMI.9.3.031504

Sharks, found in deep and shallow waters throughout the oceans, are some of the oldest living creatures on planet Earth. Shark skeletons, made of rubbery tissue called cartilage, have fascinated scientists for eons. Sharks swim at high speeds under deep water, and their skeletons experience high pressure and strain. These swimming-induced loads are borne by the centrum—mineralized bony tissue present in the shark’s vertebrae. However, from a functional standpoint, it is not fully clear how the complex 3D mineral structures of the shark centrum support and distribute loads within it.

To gain further insights into the special characteristics of shark centra, an interdisciplinary team of researchers used a novel approach in which energy dispersive diffraction (EDD) was performed using polychromatic synchrotron x-radiation. Their findings are reported in a new paper published in SPIE’s Journal of Medical Imaging (JMI). “Studies that use 3D diffraction to map mineralized tissue are quite rare, and there have been no such diffraction studies on shark centrum tissues. The information we can get from traditional absorption or phase contrast imaging techniques is quite limited,” explains corresponding author Stuart R. Stock of Northeastern University’s Feinberg School of Medicine. “The mechanical properties of mineralized tissues depend strongly on how the mineral is oriented, and we wanted to use our novel technique to obtain informative 3D EDD maps of distribution of bioapatite nanocrystal orientations within the mineralized tissue of blue sharks.”

Unlike conventional x-ray diffraction techniques that use x-rays of one energy, EDD irradiates with x-rays of different wavelengths. Differently oriented nanocrystals diffract different wavelengths, so moving the specimen across the beam allows the varied crystal orientations to be mapped. The team combined the diffraction technique with microcomputed tomography and fluorescence mapping to add complementary information. The combined technique effectively allowed the researchers to see “inside” the centrum tissue at a molecular level and construct high-resolution 3D maps of the bioapatite arrangements within it.

The main structures of the blue shark centrum are the cone walls and wedges. The researchers found that the orientation of bioapatite differed between the cone walls and wedges and interpreted this as allowing the shark vertebra to resist lateral and axial deflections, respectively, during swimming. These findings offer interesting insights into the structure–function relationship of the shark skeleton, and could perhaps be applied to bony structures and tissues in other organisms.

According to Bert Müller, Medical Faculty at the University of Basel and JMI Guest Editor, “The combination of diffraction and tomography with fluorescence imaging data provides detailed insight into the crystalline organization of bone and cartilage down to the molecular level. It offers a starting point for a deep understanding of the unique oriented structures in bony tissues and the related skeletal function.”

By showing that mineralized tissue samples can be mapped three-dimensionally using EDD tomography, the study provides a proof-of-concept that has important implications for studying bones of human and animal cadavers in the medical sciences. Stock says, “3D mapping with EDD could help us understand nanoscopic differences in mineral structure between healthy and diseased bones, as in osteoporosis, and also understand how healed bones are different from native bones. Such studies could lead to significant clinical advancements.”

While 3D EDD tomography may not be able to answer every question we have about bones, it could certainly provide key information and pave the way for additional advancements. Make no bones about it.

Read the open access article by S. R. Stock et al., “Microstructure and energy dispersive diffraction reconstruction of 3D patterns of crystallographic texture in a shark centrum,” J. Med. Imag. 9(3) 031504 (2022), doi 10.1117/1.JMI.9.3.031504.



Journal

Journal of Medical Imaging

DOI

10.1117/1.JMI.9.3.031504

Article Title

Microstructure and energy dispersive diffraction reconstruction of 3D patterns of crystallographic texture in a shark centrum

Article Publication Date

2-Feb-2022

Share12Tweet8Share2ShareShareShare2

Related Posts

Dr. Carl Nathan Honored with David and Beatrix Hamburg Award

Dr. Carl Nathan Honored with David and Beatrix Hamburg Award

September 17, 2025
New Study Explores the Link Between Lipid Metabolism and Parkinson’s Disease

New Study Explores the Link Between Lipid Metabolism and Parkinson’s Disease

September 17, 2025

Magnetic Fields Enhance Monascus Pigment Production and Suppress Citrinin by Modulating Iron Metabolism

September 17, 2025

Single-Cell Rice Atlas Uncovers Cis-Regulatory Evolution

September 17, 2025

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    155 shares
    Share 62 Tweet 39
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    117 shares
    Share 47 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    67 shares
    Share 27 Tweet 17
  • Scientists Achieve Ambient-Temperature Light-Induced Heterolytic Hydrogen Dissociation

    48 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

High-Intensity Interval Training Enhances Cocaine Aversion in Adolescent Lab Animals, Study Finds

Revolutionizing Cancer Treatment: The Role of Nanomaterials and the Tumor Microenvironment

New Insights into Immunotherapy Failure Offer New Hope for Cancer Patients

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.