• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, October 28, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

To predict an epidemic, evolution can’t be ignored

Bioengineer by Bioengineer
March 2, 2020
in Health
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Carnegie Mellon College of Engineering


When scientists try to predict the spread of something across populations–anything from a coronavirus to misinformation–they use complex mathematical models to do so. Typically, they’ll study the first few steps in which the subject spreads, and use that rate to project how far and wide the spread will go.

But what happens if a pathogen mutates, or information becomes modified, changing the speed at which it spreads? In a new study appearing in this week’s issue of Proceedings of the National Academy of Sciences (PNAS), a team of Carnegie Mellon University researchers show for the first time how important these considerations are.

“These evolutionary changes have a huge impact,” says CyLab faculty member Osman Yagan, an associate research professor in Electrical and Computer Engineering (ECE) and corresponding author of the study. “If you don’t consider the potential changes over time, you will be wrong in predicting the number of people that will get sick or the number of people who are exposed to a piece of information.”

Most people are familiar with epidemics of disease, but information itself–nowadays traveling at lightning speeds over social media–can experience its own kind of epidemic and “go viral.” Whether a piece of information goes viral or not can depend on how the original message is tweaked.

“Some pieces of misinformation are intentional, but some may develop organically when many people sequentially make small changes like a game of ‘telephone,'” says Yagan. “A seemingly boring piece of information can evolve into a viral Tweet, and we need to be able to predict how these things spread.”

In their study, the researchers developed a mathematical theory that takes these evolutionary changes into consideration. They then tested their theory against thousands of computer-simulated epidemics in real-world networks, such as Twitter for the spread of information or a hospital for the spread of disease.

In the context of spreading of infectious disease, the team ran thousands of simulations using data from two real-world networks: a contact network among students, teachers, and staff at a US high school, and a contact network among staff and patients in a hospital in Lyon, France.

These simulations served as a test bed: the theory that matches what is observed in the simulations would prove to be the more accurate one.

“We showed that our theory works over real-world networks,” says the study’s first author, Rashad Eletreby, who was a Carnegie Mellon Ph.D. student when he wrote the paper. “Traditional models that don’t consider evolutionary adaptations fail at predicting the probability of the emergence of an epidemic.”

While the study isn’t a silver bullet for predicting the spread of today’s coronavirus or the spread of fake news in today’s volatile political environment with 100% accuracy – one would need real-time data tracking the evolution of the pathogen or information to do that – the authors say it’s a big step.

“We’re one step closer to reality,” says Eletreby.

###

Other authors on the study included ECE Ph.D. student Yong Zhuang, Institute for Software Research professor Kathleen Carley, and Princeton Electrical Engineering professor Vincent Poor.

Media Contact
Daniel Tkacik
[email protected]
412-268-1187

Tags: Computer ScienceDisease in the Developing WorldEpidemiologyInternetPopulation BiologyPublic HealthScience/Health and the LawSystem Security/HackersTechnology/Engineering/Computer ScienceTheory/Design
Share12Tweet8Share2ShareShareShare2

Related Posts

Enhancing Nurses’ Seizure Management Through Flipped Learning

October 28, 2025

Amlodipine Targets Glioma Stem Cells by Degrading EGFR

October 28, 2025

Smart Hydrogel Boosts Diabetic Foot Regeneration Mechanisms

October 28, 2025

Systematic Review Finds Psilocybin Reduces Obsessive-Compulsive Behaviors in Clinical and Preclinical Studies

October 28, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1287 shares
    Share 514 Tweet 321
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    310 shares
    Share 124 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    198 shares
    Share 79 Tweet 50
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    135 shares
    Share 54 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Enhancing Nurses’ Seizure Management Through Flipped Learning

Amlodipine Targets Glioma Stem Cells by Degrading EGFR

Smart Hydrogel Boosts Diabetic Foot Regeneration Mechanisms

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.