• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, September 17, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

To nodulate or not? Uncovering how nitrate regulates gene expression in legumes

Bioengineer by Bioengineer
April 9, 2021
in Health
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Researchers from the University of Tsukuba find that nitrate-induced control of root nodule formation results from varying DNA-binding properties of specific proteins that control gene expression

IMAGE

Credit: University of Tsukuba

Tsukuba, Japan – Plants in the bean family (legumes) form nodules on their roots to take up nitrogen. Legumes will stop nodule production when nitrogen is plentiful (Figure 1), but precisely how nitrate presence controls nodule formation in these plants has been a mystery. Now, researchers from Japan have found that interactions between proteins and nitrate can induce and repress genes, controlling nodulation with potential applications in sustainable agriculture.

In a study published in April in The Plant Cell, a research team from the University of Tsukuba has shown that the different DNA-binding properties between proteins that establish nodule development determine if genes involved in symbiosis that govern nodulation turn on or off and that this gene expression is nitrate-induced.

Until now, there was an incomplete understanding of the molecular activity determining how legumes stop nodulation in the presence of excess nitrate. Previous research identified transcription factors (proteins that help turn specific genes “on” or “off”) involved with nodule formation, but that’s just part of the story.

“Building on the previous identification of transcription factors for proteins (known as NLPs) involved in nodule inception, we sought to answer the question of how symbiotic gene expression facilitating nodulation is controlled by nitrate,” says senior author of the study Professor Takuya Suzaki. “We tested specific NLPs and found that they have overlapping functions, causing nitrate-induced control of nodulation.”

To examine these molecular interactions, the researchers analyzed RNA molecules and plant traits using proteins from Lotus japonicus. They found that some proteins have dual functions, acting as master regulators for nitrate-dependent gene expression. They also identified new protein binding sites and compared them to previously known ones. Their findings reveal basic principles relating to NLP-regulated transcription of symbiotic genes inhibiting nitrate nodulation.

The research team emphasized additional questions. Some NLPs are found in cell nuclei in response to nitrate and stop nodule production, while others constantly aggregate in nuclei irrespective of nitrate levels. For the latter, it is unclear how they function exclusively in the presence of nitrate. The location of the NLPs in the cell matters because translation (when RNA is coded into proteins) happens in the cell’s cytoplasm. If changes to proteins occur after the genetic code has been read (post-translational modifications), it could explain how these NLPs access protein-protein interactions and regulate genes.

“Uncovering how transcription factors influence gene expression has been a missing piece to the puzzle of understanding plant transcription regulation,” Professor Suzaki explains. “Our discoveries bring us closer to knowing what is possible within these complex molecular relationships, but there is plenty left to untangle. Future research should aim to answer the question of how nodulation is regulated by other NLPs and in other plant species of interest.”

###

The article, “Different DNA-binding Specificities of NLP and NIN Transcription Factors Underlie Nitrate-Induced Control of Root Nodulation,” was published in The Plant Cell at DOI: 10.1093/plcell/koab103

Media Contact
Naoko Yamashina
[email protected]

Related Journal Article

http://dx.doi.org/10.1093/plcell/koab103

Tags: BiochemistryBiologyCell BiologyDevelopmental/Reproductive BiologyGenesGeneticsMolecular BiologyPlant Sciences
Share12Tweet8Share2ShareShareShare2

Related Posts

UMass Amherst Researcher Awarded $1.12M NSF Grant to Investigate Water Governance Effects on Child Health Across Five Nations

UMass Amherst Researcher Awarded $1.12M NSF Grant to Investigate Water Governance Effects on Child Health Across Five Nations

September 17, 2025

Study Reveals Resistance Training Enhances Nerve Health and Slows Aging Process

September 17, 2025

American College of Chest Physicians Pioneers Initiative to Expand Access to Lifesaving Noninvasive Ventilation for COPD Patients

September 17, 2025

Impact of Soccer Headers on Brain Health: Study Reveals Structural Changes in Brain Folds

September 17, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    155 shares
    Share 62 Tweet 39
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    117 shares
    Share 47 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    67 shares
    Share 27 Tweet 17
  • Scientists Achieve Ambient-Temperature Light-Induced Heterolytic Hydrogen Dissociation

    48 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Neural Circuitry Driving Autonomic Dysreflexia Unveiled

UMass Amherst Researcher Awarded $1.12M NSF Grant to Investigate Water Governance Effects on Child Health Across Five Nations

Widely Available, Affordable Medication Reduces Colorectal Cancer Recurrence Risk by Half

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.