• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, September 10, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

To make amino acids, just add electricity

Bioengineer by Bioengineer
January 29, 2020
in Health
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Researchers at Kyushu University achieve highly efficient amino acid synthesis from biomass-derivable acids and water using electric energy

IMAGE

Credit: Szabolcs Arany, Kyushu University


New research from Kyushu University in Japan could one day help provide humans living away from Earth some of the nutrients they need to survive in space or even give clues to how life started.

Researchers at the International Institute for Carbon-Neutral Energy Research reported a new process using electricity to drive the efficient synthesis of amino acids, opening the door for simpler and less-resource-intensive production of these key components for life.

In addition to being the basic building blocks of proteins, amino acids are also involved in various functional materials such as feed additives, flavor enhancers, and pharmaceuticals.

However, most current methods for artificially producing amino acids are based on fermentation using microbes, a process that is time and resource intensive, making it impractical for production of these vital nutrients in space-limited and resource-restricted conditions.

Thus, researchers have been searching for efficient production methods driven by electricity, which can be generated from renewable sources, but efforts so far have used electrodes of toxic lead or mercury or expensive platinum and resulted in low efficiency and selectivity.

Takashi Fukushima and Miho Yamauchi now report in Chemical Communications that they succeeded in efficiently synthesizing several types of amino acids using abundant materials.

“The overall reaction is simple, but we needed the right combination of starting materials and catalyst to get it to actually work without relying on rare materials,” says Yamauchi.

The researchers settled on a combination of titanium dioxide as the electrocatalyst and an organic acid called alpha-keto acid as the key source material. Titanium dioxide is abundantly available on Earth, and alpha-keto acid can be easily extracted from woody biomass.

Placing the alpha-keto acid and a source of nitrogen, such as ammonia or hydroxylamine, in a water-based solution and running electricity through it using two electrodes, one of which was titanium dioxide, led to synthesis of seven amino acids–alanine, glycine, aspartic acid, glutamic acid, leucine, phenylalanine, and tyrosine–with high efficiency and high selectivity even under mild conditions.

Hydrogen, which is also needed as part of the reaction, was generated during the process as a natural result of running electricity between electrodes in water.

In addition to demonstrating the reaction, the researchers also built a flow reactor that can electrochemically synthesize the amino acids continuously, indicating the possibilities for scaling up production in the future.

“We hope that our approach will provide useful clues for the future construction of artificial carbon and nitrogen cycles in space,” comments Yamauchi.

“Electrochemical processes are also believed to have played a role in the origin of life by producing fundamental chemicals for life through non-biological pathways, so our findings may also contribute to the elucidation of the mystery of the creation of life,” she adds.

###

For more information about this research, see “Electrosynthesis of amino acids from biomass-derivable acids on titanium dioxide,” Takashi Fukushima and Miho Yamauchi, Chemical Communications (2019), https://doi.org/10.1039/c9cc07208j

Media Contact
William J. Potscavage Jr.
[email protected]
81-928-022-138

Related Journal Article

http://dx.doi.org/10.1039/c9cc07208j

Tags: BiochemistryBiomedical/Environmental/Chemical EngineeringChemistry/Physics/Materials SciencesNutrition/NutrientsTechnology/Engineering/Computer Science
Share12Tweet8Share2ShareShareShare2

Related Posts

Impact of Teamwork and Competition on STEM Engagement

September 10, 2025

Transforming Postgraduate Nursing: Journal Club Insights

September 10, 2025

PLD4 Mutations Trigger Systemic Lupus Erythematosus

September 10, 2025

In-Person and Online Event Showcases Strategies for Advancing Food Animal Welfare

September 10, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    151 shares
    Share 60 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    62 shares
    Share 25 Tweet 16
  • First Confirmed Human Mpox Clade Ib Case China

    56 shares
    Share 22 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Impact of Teamwork and Competition on STEM Engagement

Transforming Postgraduate Nursing: Journal Club Insights

Unraveling Gene Expression Mechanisms in Glioblastoma

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.