• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, August 25, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

To e-, or not to e-, the question for the exotic ‘Si-III’ phase of silicon

Bioengineer by Bioengineer
April 4, 2017
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Illustration is courtesy of Tim Strobel.

Washington, DC–It would be difficult to overestimate the importance of silicon when it comes to computing, solar energy, and other technological applications. (Not to mention the fact that it makes up an awful lot of the Earth's crust.) Yet there is still so much to learn about how to harness the capabilities of element number fourteen.

The most-common form of silicon crystallizes in the same structure as diamond. But other forms can be created using different processing techniques. New work led by Carnegie's Tim Strobel and published in Physical Review Letters shows that one form of silicon, called Si-III (or sometimes BC8), which is synthesized using a high-pressure process, is what's called a narrow band gap semiconductor.

What does this mean and why does it matter?

Metals are compounds that are capable of conducting the flow of electrons that makes up an electric current, and insulators are compounds that conduct no current at all. Semiconductors, which are used extensively in electronic circuitry, can have their electrical conductivity turned on and off–an obviously useful capability. This ability to switch conductivity is possible because some of their electrons can move from lower-energy insulating states to higher-energy conducting states when subjected to an input of energy. The energy required to initiate this leap is called a band gap.

The diamond-like form of silicon is a semiconductor and other known forms are metals, but the true properties of Si-III remained unknown until now. Previous experimental and theoretical research suggested that Si-III was a poorly conducting metal without a band gap, but no research team had been able to produce a pure and large enough sample to be sure.

By synthesizing pure, bulk samples of Si-III, Strobel and his team were able to determine that Si-III is actually a semiconductor with an extremely narrow band gap, narrower than the band gap of diamond-like silicon crystals, which is the most-commonly utilized kind. This means that Si-III could have uses beyond the already full slate of applications for which silicon is currently used. With the availability of pure samples, the team was able to fully characterize the electronic, optical, and thermal transport properties of Si-III for the first time.

"Historically, the correct recognition of germanium as a semiconductor instead of the metal it was once widely believed to be truly helped to start the modern semiconductor era; similarly, the discovery of semiconducting properties of Si-III might lead to unpredictable technological advancement," remarked lead author, Carnegie's Haidong Zhang. "For example, the optical properties of Si-III in the infrared region are particularly interesting for future plasmonic applications."

###

Other co-authors on the paper are Hanyu Liu, Zhenxian Liu, and Michael Guerette of Carnegie; Kaya Wei and George Nolas of University of South Florida; Oleksandr Kurakevych and Yann Le Godec of Institut de Minéralogie de Physique des Matériaux et de Cosmochimie; and Joshua Martin of the National Institutes of Standards and Technology.

Caption: Is Si-III a metal with freely travelling electrons, or a semiconductor with a discrete energy gap that can 'stop' the flow? It turns out the latter is true, but the band gap of Si-III is so small that electrons can 'proceed with caution' through the structure. Illustration is courtesy of Tim Strobel.

This work was supported as part of the Energy Frontier Research in Extreme Environments (EFRee) Center, and Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science.

The Carnegie Institution for Science (carnegiescience.edu) is a private, nonprofit organization headquartered in Washington, D.C., with six research departments throughout the U.S. Since its founding in 1902, the Carnegie Institution has been a pioneering force in basic scientific research. Carnegie scientists are leaders in plant biology, developmental biology, astronomy, materials science, global ecology, and Earth and planetary science.

Media Contact

Tim Strobel
[email protected]
202-478-8943
@carnegiescience

https://carnegiescience.edu/

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

AASM Unveils Innovative Patient-Reported Outcome Tool for Sleep Apnea

August 25, 2025
blank

Branched-Chain Amino Acids Drive Diabetic Kidney Damage

August 25, 2025

Revolutionary Advances in Indole Chemistry Promise to Speed Up Drug Development

August 25, 2025

Advancements in Aqueous Zinc-Ion Battery Materials

August 25, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    140 shares
    Share 56 Tweet 35
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

AASM Unveils Innovative Patient-Reported Outcome Tool for Sleep Apnea

Branched-Chain Amino Acids Drive Diabetic Kidney Damage

Revolutionary Advances in Indole Chemistry Promise to Speed Up Drug Development

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.