• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, October 25, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Tiny worms make complex decisions, too

Bioengineer by Bioengineer
March 7, 2022
in Biology
Reading Time: 3 mins read
0
Science Image
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

LA JOLLA—(March 07, 2022) How does an animal make decisions? Scientists have spent decades trying to answer this question by focusing on the cells and connections of the brain that might be involved. Salk scientists are taking a different approach—analyzing behavior, not neurons. They were surprised to find that worms can take multiple factors into account and choose between two different actions, despite having only 302 neurons compared to approximately 86 billion in humans.

Science Image

Credit: Salk Institute

LA JOLLA—(March 07, 2022) How does an animal make decisions? Scientists have spent decades trying to answer this question by focusing on the cells and connections of the brain that might be involved. Salk scientists are taking a different approach—analyzing behavior, not neurons. They were surprised to find that worms can take multiple factors into account and choose between two different actions, despite having only 302 neurons compared to approximately 86 billion in humans.

The findings, published in Current Biology on March 7, 2022, have important implications for the way researchers assess motivation and cognitive abilities in animals. What’s more, the study demonstrates that complex decision-making capabilities could be encoded in small biological and artificial networks.

“Our study shows you can use a simple system such as the worm to study something complex, like goal-directed decision-making. We also demonstrated that behavior can tell us a lot about how the brain works,” says senior author Sreekanth Chalasani, associate professor in Salk’s Molecular Neurobiology Laboratory. “Even simple systems like worms have different strategies, and they can choose between those strategies, deciding which one works well for them in a given situation. That provides a framework for understanding how these decisions are made in more complex systems, such as humans.”

Whether eating prey or defending its food source, the predatory worm Pristionchus pacificus relies on biting. The team’s challenge was to determine the worm’s intentions when it bites.

The researchers found that P. pacificus chooses between two foraging strategies for biting its prey and competitor, another worm called Caenorhabditis elegans: 1) predatory strategy, in which its goal for biting is to kill prey, or 2) territorial strategy, in which biting is instead used to force C. elegans away from a food source. P. pacificus chooses the predatory strategy against larval C. elegans, which is easy to kill. In contrast, P. pacificus selects the territorial strategy against adult C. elegans, which is difficult to kill and outcompetes P. pacificus for food.

To the team, it appeared that P. pacificus weighed the costs and benefits of multiple potential outcomes of an action—behavior that’s familiar in vertebrates but unexpected in a worm.

“Scientists have always assumed that worms were simple—when P. pacificus bites we thought that was always for a singular predatory purpose,” says first author Kathleen Quach, a postdoctoral fellow in Chalasani’s lab. “Actually, P. pacificus is versatile and can use the same action, biting C. elegans, to achieve different long-term goals. I was surprised to find that P. pacificus could leverage what seemed like failed predation into successful and goal-directed territoriality.”

In the future, the scientists would like to determine which of P. pacificus’ cost-benefit calculations are hard-wired or flexible. They hope more research like this will help further uncover the molecular underpinnings of decision-making.

The research was supported by the National Institutes of Health (5R01MH113905), the W.M. Keck Foundation, the National Science Foundation, Salk Women & Science and a Paul F. Glenn Foundation Postdoctoral Fellowship.

About the Salk Institute for Biological Studies:

Every cure has a starting point. The Salk Institute embodies Jonas Salk’s mission to dare to make dreams into reality. Its internationally renowned and award-winning scientists explore the very foundations of life, seeking new understandings in neuroscience, genetics, immunology, plant biology and more. The Institute is an independent nonprofit organization and architectural landmark: small by choice, intimate by nature and fearless in the face of any challenge. Be it cancer or Alzheimer’s, aging or diabetes, Salk is where cures begin. Learn more at: salk.edu.

 



Journal

Current Biology

DOI

10.1016/j.cub.2022.02.033

Article Title

Flexible reprogramming of Pristionchus pacificus motivation for attacking Caenorhabditis elegans in predator-prey competition

Article Publication Date

7-Mar-2022

Share12Tweet8Share2ShareShareShare2

Related Posts

Comparing Four Exome Capture Platforms on DNBSEQ

Comparing Four Exome Capture Platforms on DNBSEQ

October 25, 2025
EasyGeSe: Benchmarking Tool for Genomic Prediction Methods

EasyGeSe: Benchmarking Tool for Genomic Prediction Methods

October 25, 2025

Avocado Seed Meal Boosts Quail Growth and Meat Quality

October 25, 2025

Peanut Terpene Synthase Analysis Uncovers Biosynthesis Interactions

October 25, 2025

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1281 shares
    Share 512 Tweet 320
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    309 shares
    Share 124 Tweet 77
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    192 shares
    Share 77 Tweet 48
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    133 shares
    Share 53 Tweet 33

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Glymphatic Flow Dysfunction Linked to Parkinson’s Disease

Night Shift Impact on Nurses’ Heart Rate Variability

Assessing Quality of Life After Neoadjuvant Therapy

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.