• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, October 31, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Tiny shells indicate big changes to global carbon cycle

Bioengineer by Bioengineer
May 25, 2017
in Health
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
Loading video…

Credit: UC Davis Bodega Marine Laboratory

Experiments with tiny, shelled organisms in the ocean suggest big changes to the global carbon cycle are underway, according to a study from the University of California, Davis.

For the study, published in the journal Scientific Reports, scientists raised foraminifera — single-celled organisms about the size of a grain of sand — at the UC Davis Bodega Marine Laboratory under future, high CO2 conditions.

These tiny organisms, commonly called "forams," are ubiquitous in marine environments and play a key role in food webs and the ocean carbon cycle.

STRESSED UNDER FUTURE CONDITIONS

After exposing them to a range of acidity levels, UC Davis scientists found that under high CO2, or more acidic, conditions, the foraminifera had trouble building their shells and making spines, an important feature of their shells.

They also showed signs of physiological stress, reducing their metabolism and slowing their respiration to undetectable levels.

This is the first study of its kind to show the combined impact of shell building, spine repair, and physiological stress in foraminifera under high CO2 conditions. The study suggests that stressed and impaired foraminifera could indicate a larger scale disruption of carbon cycling in the ocean.

OFF BALANCE

As a marine calcifier, foraminifera use calcium carbonate to build their shells, a process that plays an integral part in balancing the carbon cycle.

Normally, healthy foraminifera calcify their shells and sink to the ocean floor after they die, taking the calcite with them. This moves alkalinity, which helps neutralize acidity, to the seafloor.

When foraminifera calcify less, their ability to neutralize acidity also lessens, making the deep ocean more acidic.

But what happens in the deep ocean doesn't stay in the deep ocean.

IMPACTS FOR THOUSANDS OF YEARS

"It's not out-of-sight, out-of-mind," said lead author Catherine Davis, a Ph.D. student at UC Davis during the study and currently a postdoctoral associate at the University of South Carolina. "That acidified water from the deep will rise again. If we do something that acidifies the deep ocean, that affects atmospheric and ocean carbon dioxide concentrations on time scales of thousands of years."

Davis said the geologic record shows that such imbalances have occurred in the world's oceans before, but only during times of major change.

"This points to one of the longer time-scale effects of anthropogenic climate change that we don't understand yet," Davis said.

UPWELLING BRINGS 'FUTURE' TO SURFACE

One way acidified water returns to the surface is through upwelling, when strong winds periodically push nutrient-rich water from the deep ocean up to the surface. Upwelling supports some of the planet's most productive fisheries and ecosystems. But additional anthropogenic, or human-caused, CO2 in the system is expected to impact fisheries and coastal ecosystems.

UC Davis' Bodega Marine Laboratory in Northern California is near one of the world's most intense coastal upwelling areas. At times, it experiences conditions most of the ocean isn't expected to experience for decades or hundreds of years.

"Seasonal upwelling means that we have an opportunity to study organisms in high CO2, acidic waters today — a window into how the ocean may look more often in the future," said co-author Tessa Hill, an associate professor in earth and planetary sciences at UC Davis. "We might have expected that a species of foraminifera well-adapted to Northern California wouldn't respond negatively to high CO2 conditions, but that expectation was wrong. This study provides insight into how an important marine calcifier may respond to future conditions, and send ripple effects through food webs and carbon cycling."

###

The study's other co-authors include Emily Rivest from UC Davis and Virginia Institute of Marine Science, UC Davis professors Brian Gaylord and Eric Sanford, and UC Davis associate research scientist Ann Russell.

The study was supported by the National Science Foundation and the Cushman Foundation Johanna M. Resig Fellowship.

Media Contact

Catherine Davis
[email protected]
@ucdavisnews

http://www.ucdavis.edu

############

Story Source: Materials provided by Scienmag

Share12Tweet7Share2ShareShareShare1

Related Posts

Impact of Childhood Trauma on Autistic Youth Health

October 31, 2025

Advancing Smoking Cessation Strategies for Individuals Living with HIV

October 30, 2025

Body Image and Spiritual Well-Being in Exercise Addiction

October 30, 2025

Cultural Conflicts Cause Distress for Dementia Caregivers

October 30, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1292 shares
    Share 516 Tweet 323
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    312 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    202 shares
    Share 81 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    136 shares
    Share 54 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Researchers Discover Novel Energy Potential in Iron-Based Materials

Impact of Childhood Trauma on Autistic Youth Health

UCSB Experimentalists Awarded Gordon and Betty Moore Foundation Grants to Propel New Insights and Innovations

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.