• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, October 17, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Tiny scales reveal megalodon was not as fast as believed, but it had a mega-appetite explaining its gigantism

Bioengineer by Bioengineer
July 11, 2023
in Biology
Reading Time: 3 mins read
0
Placoid scales on the megatooth shark, Otodus megalodon
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A new study reveals the iconic extinct Megalodon, or ‘megatooth shark’, was a rather slow cruiser that used its warm-bloodedness to facilitate digestion and absorption of nutrients.

Placoid scales on the megatooth shark, Otodus megalodon

Credit: DePaul University/Kenshu Shimada

A new study reveals the iconic extinct Megalodon, or ‘megatooth shark’, was a rather slow cruiser that used its warm-bloodedness to facilitate digestion and absorption of nutrients.

DePaul University paleobiology professor Kenshu Shimada and coauthors propose radically new interpretations of the lifestyle and biology of Otodus megalodon, the fossil shark that lived nearly worldwide roughly 15 to 3.6 million years ago.

The new study, which overturns conventional wisdom about the swimming speed of Megalodon, appears in the international scientific journal Historical Biology.

Otodus megalodon is commonly portrayed as a gigantic, monstrous shark in novels and films, such as the 2018 sci-fi thriller “The Meg” and the upcoming “Meg 2.” Although the species was indeed quite gigantic, the maximum possible length is thought to be about 65 feet (20 meters).

The new study is based on the discovery of tiny scales, more precisely called ‘placoid scales,’ of O. megalodon within rock pieces surrounding a previously described tooth set of the fossil shark from Japan.

“Our big scientific findings come from ‘tiny evidence’ as small as grains of sand,” says Professor Shimada.

The biology of O. megalodon was previously based largely on its gigantic teeth and vertebrae.

Inferred to be partially warm-blooded or regionally endothermic — similar to large active modern predacious sharks like the makos and great white sharks — O. megalodon was traditionally assumed to be an active fast swimming shark. However, the new study reveals that its tiny placoid scales are not equipped with narrowly-spaced ridges or ‘keels’ characteristic of fast-swimming sharks. “This led my research team to consider O. megalodon to be an ‘average swimmer’ with occasional bursts of faster swimming for prey capture,” described Shimada.

The new study also leads to a new paradox. Although strong support for the presence of regional endothermy in O. megalodon exists based on another recent study in which Shimada also played a key role, the question was how the fossil shark expended the high level of metabolic heat resulting from its warm-bloodedness without being an active swimmer.

Upon reviewing the literature, the research team noticed another possible function of endothermic body physiology that had been neglected in the biological context of O. megalodon — i.e., facilitating digestion as well as absorbing and processing nutrients. “It suddenly made perfect sense,” said Shimada. “Otodus megalodon must have swallowed large pieces of food, so it is quite possible that the fossil shark achieved the gigantism to invest its endothermic metabolism to promote visceral food processing.”



Journal

Historical Biology

DOI

10.1080/08912963.2023.2211597

Article Title

Tessellated calcified cartilage and placoid scales of the Neogene megatooth shark, Otodus megalodon (Lamniformes: Otodontidae), offer new insights into its biology and the evolution of regional endothermy and gigantism in the otodontid clade

Article Publication Date

23-Jun-2023

Share12Tweet8Share2ShareShareShare2

Related Posts

Genotype-Environment Interactions in Pejerrey Sex Differentiation

Genotype-Environment Interactions in Pejerrey Sex Differentiation

October 17, 2025
Enterobacter and Bacillus Enhance Composting, Cadmium Immobilization

Enterobacter and Bacillus Enhance Composting, Cadmium Immobilization

October 16, 2025

Rhythmic Gene Conservation Uncovered in Autotetraploid Potato

October 16, 2025

Vanderbilt Researcher Overcomes Major Challenge in AI-Driven Drug Discovery

October 16, 2025

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1254 shares
    Share 501 Tweet 313
  • New Study Reveals the Science Behind Exercise and Weight Loss

    106 shares
    Share 42 Tweet 27
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    102 shares
    Share 41 Tweet 26
  • Revolutionizing Optimization: Deep Learning for Complex Systems

    93 shares
    Share 37 Tweet 23

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Zambian Views Challenge Simplistic Global Health Decolonization

O-GlcNAc Transferase Drives Lumbar Joint Degeneration

Fatigued Hip Abductors Impact Biomechanics in Single-Leg Landings

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 65 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.