• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, November 4, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Medical Technology

Tiny Robotic ‘Hand’ in Medicine

Bioengineer by Bioengineer
February 8, 2015
in Medical Technology
Reading Time: 1 min read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Many people imagine robots today as clunky, metal versions of humans, but scientists are forging new territory in the field of ‘soft robotics.’ One of the latest advances is a flexible, microscopic hand-like gripper. The development could help doctors perform remotely guided surgical procedures or perform biopsies. The materials also could someday deliver therapeutic drugs to hard-to-reach places. The report appears in the journal ACS Applied Materials & Interfaces.

David H. Gracias and colleagues note that many robotic tools require cords to provide power to generate their movements. But cords add to the bulk of robots, which limits the spaces they can access. To address this constraint, scientists have turned to hydrogels. These soft materials can swell in response to changes in temperature, acidity or light, providing energy to carry out tasks without being tethered to a power source. However, hydrogels are too floppy for some applications, so the group combined the hydrogels with a stiff biodegradable polymer, making the microhands strong enough to wrap around and remove cells. The team then sought a way to control where the grippers go once deployed in the body.

The researchers incorporated magnetic nanoparticles in the materials so they could guide the microhands with a magnetic probe. The team concluded that this added trait could help in the microassembly or microengineering of soft or biological parts, or give surgeons the ability to remotely direct where biopsies are taken. Also, Gracias says that the use of soft materials highlights the possibility of creating biodegradable, miniaturized surgical tools that can safely dissolve in the body

Story Source:

The above story is based on materials provided by American Chemical Society.

Share12Tweet8Share2ShareShareShare2

Related Posts

Designing better medical implants

May 18, 2015

A Nano-transistor Assesses Your Health Via Sweat

May 16, 2015

Researchers develop custom artificial membranes to study the molecular basis of disease

May 8, 2015

Thermometer-like device could help diagnose heart attacks

May 7, 2015
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1298 shares
    Share 518 Tweet 324
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    313 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    205 shares
    Share 82 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    138 shares
    Share 55 Tweet 35

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

New Research Reveals Light’s Power to Reshape Atom-Thin Semiconductors for Advanced Optical Devices

Microscopic Swarms, Massive Potential: Engineers Develop Adaptive Magnetic Systems for Healthcare, Energy, and Environmental Solutions

Fiber Optics Enter a New Era for In-Depth Exploration of Brain Circuits

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.