• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, September 21, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Tiny poisonous Brazilian frogs are ‘deaf’ to their own call

Bioengineer by Bioengineer
October 3, 2017
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Sandra Goutte

Tiny Brazilian frogs still 'sing' despite not being able to hear themselves – this is the surprising discovery of new scientific research.

The new study, published in the journal Scientific Reports from the publishers of Nature, reveals that two species of pumpkin toadlets found on the leaf litter of Brazil's Atlantic forest are insensitive to the sound of their own calls, producing sounds outside their hearing sensitivity range due to a partly undeveloped inner ear.

The findings show that these species differ dramatically from other frogs and toads, who have their ears tuned to the dominant frequency of their vocalisations and rely heavily on their acoustic communication to find a mate.

The results are particularly surprising due the potential costs associated with signal production. Male frogs calling to signal their presence to the opposite sex use valuable energy stores and could alert predators and parasites to their presence. However, like many brightly-coloured tropical frogs, pumpkin toadlets are highly toxic which researchers believe could lessen the threat to them from predators.

The research was led by scientists from a number of international universities, including the University of Campinas, Brazil, the University of Southern Denmark, Denmark, and the University of Lincoln, UK.

As pumpkin toadlets do not have ears, researchers exposed them to broadband signals and non-invasively scanned their body with a micro-scanning laser Doppler vibrometer, to detect vibrations, aiming to identify potential areas that vibrate at the frequency of the male calls. While vibrations were detected in the lungs, neural recordings suggest that the frogs do not 'hear' these frequencies.

The frogs are thought to be a unique case in the animal kingdom of a communication signal persisting even after its target audience has lost the ability to detect, and could be an example of evolution in the making where visual communication is replacing acoustic communication.

The movement of the throat made when males call out could constitute a visual signal, representing a by-product of the true signalling behaviour.

Dr Fernando Montealegre-Z, Head of the Bioacoustics and Sensory Biology Lab in the School of Life Sciences at the University of Lincoln, said: "These species effectively sing for nothing. It is a default behaviour after losing their hearing. They may be in a stage of evolution towards the complete loss of acoustic communication, where the hearing system has been lost but the vocal signals still occur."

Studying the unique status of acoustic communication in these pumpkin toadlets further is likely to provide additional insights into the evolution and degeneration of acoustic communication systems in vertebrates.

###

The study, 'Evidence of auditory insensitivity to vocalisation frequencies in two frogs', is available to view online (Doi:10.1038/s41598-017-12145-5).

Media Contact

Laura Jones
[email protected]
01-522-886-242
@unilincoln

http://www.lincoln.ac.uk/home/

Original Source

http://www.lincoln.ac.uk/news/2017/10/1399.asp http://dx.doi.org/10.1038/s41598-017-12145-5

Share12Tweet7Share2ShareShareShare1

Related Posts

Standardized Extract Boosts Immunity in Chemotherapy Mice

September 20, 2025
Enhancing Labeo rohita Growth with Trypsin Nanoparticles

Enhancing Labeo rohita Growth with Trypsin Nanoparticles

September 20, 2025

Comparing ZISO-Driven Carotenoid Production in Dunaliella Species

September 19, 2025

When Metabolism Powers More Than Just Fuel: Exploring Its Expanded Role

September 19, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    156 shares
    Share 62 Tweet 39
  • Physicists Develop Visible Time Crystal for the First Time

    68 shares
    Share 27 Tweet 17
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    49 shares
    Share 20 Tweet 12
  • Scientists Achieve Ambient-Temperature Light-Induced Heterolytic Hydrogen Dissociation

    48 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

NICU Families’ Stories Through Staff Perspectives

CT Scans in Kids: Cancer Risk Insights

Revealing Tendon Changes from Rotator Cuff Tears

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.