• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, November 4, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

‘Tiny earthquakes’ help scientists predict mountain rock falls

Bioengineer by Bioengineer
December 19, 2016
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Technical University of Munich

The risk of mountain rock falls in regions with sub-zero temperatures, such as the Swiss Alps and parts of Canada, could be better predicted by using technology which measures 'tiny earthquakes' – according to a group of international experts.

In a new study led by the University of Sussex, geoscientists from the British Geological Survey and the Technical University of Munich reveal that using a micro-seismic technique, which detects tiny earthquakes which cause cracks in the rock, alongside modern electrical imaging technology, which measures rock mass, would provide scientists with much earlier warnings of potential rock falls.

Traditionally scientists use a manual method to monitor rock freezing and thawing, which involves drilling holes into rocks and is affected by frost weathering. During the new study the scientists replicated the conditions of a freezing environment in the Permafrost Laboratory at the University of Sussex and monitored the freeze-thaw of six hard and soft limestone blocks during an experiment that simulated 27 years of natural freezing and thawing.

By using the micro-seismic technique together with capacitive resistivity imaging, which measures freezing and thawing in limestone without having to drill into the rock, the study team recorded a staggering 1000 micro-cracking events.

With previous studies showing that higher temperatures, caused by global warming, have led to more unstable mountain rocks – the scientists, who took part in the new study, believe that using the two monitoring techniques together could prove vital for thousands of skiers and mountain climbers who undertake trips every year.

Professor Julian Murton, from the University of Sussex, who led on the study, said: "As our climate warms mountain rock walls are becoming more unstable – so working out how to predict rock falls could prove crucial in areas where people go climbing and skiing.

"Understanding the impact of freezing and thawing on bedrock is vital if we are to assess the stability of mountain rock walls. By using these two techniques together we have not only identified a practical method which allows us to monitor many more cracking events – but also one which can be used for many years to come."

Dr Oliver Kuras, from the British Geological Survey, who led on the development of geo-electrical imaging technology, said: "It is traditionally difficult to reliably 'see inside rock walls' using conventional electrical imaging methods, particularly when repeating surveys over time.

"With our new capacitive resistivity imaging technology, we have extended the advantages of state-of-the-art geo-electrical monitoring to hard rock environments, which should benefit geohazards research in the future."

Professor Michael Krautblatter, from the Technical University of Munich, added: "With this study we could virtually visualise and listen to the cracking of rocks and we can now better understand how rock slopes become unstable and produce hazardous rock falls."

###

The paper entitled, "Monitoring rock freezing and thawing by novel geo-electrical and acoustic techniques", has been published in the Journal of Geophysical Research – Earth Surface and can be found here.

For further information please contact [email protected] or telephone: +44 (0)1273 678888

http://www.sussex.ac.uk/newsandevents

Editorial Notes:

Two of the six limestone block samples used in University of Sussex's Permafrost Lab were from the north face of Zugspitze (the highest mountain in Germany). Pictures of the peak are available by emailing [email protected]

Media Contact

Lynsey Ford
[email protected]
01-273-678-888
@sussexunipress

http://www.sussex.ac.uk

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

New Research Reveals Light’s Power to Reshape Atom-Thin Semiconductors for Advanced Optical Devices

New Research Reveals Light’s Power to Reshape Atom-Thin Semiconductors for Advanced Optical Devices

November 4, 2025
Microscopic Swarms, Massive Potential: Engineers Develop Adaptive Magnetic Systems for Healthcare, Energy, and Environmental Solutions

Microscopic Swarms, Massive Potential: Engineers Develop Adaptive Magnetic Systems for Healthcare, Energy, and Environmental Solutions

November 4, 2025

Fiber Optics Enter a New Era for In-Depth Exploration of Brain Circuits

November 4, 2025

Turning Oyster Shells into Conservation Tools: Archaeology’s Innovative Approach to Sustainability

November 4, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1298 shares
    Share 518 Tweet 324
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    313 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    205 shares
    Share 82 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    138 shares
    Share 55 Tweet 35

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

New Research Reveals Light’s Power to Reshape Atom-Thin Semiconductors for Advanced Optical Devices

Microscopic Swarms, Massive Potential: Engineers Develop Adaptive Magnetic Systems for Healthcare, Energy, and Environmental Solutions

Fiber Optics Enter a New Era for In-Depth Exploration of Brain Circuits

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.